Abstract

Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single cell RNA sequencing (scRNAseq) to characterize an enriched population of human hematopoietic stem and progenitor cells (HSPCs) obtained from young and elderly healthy individuals. Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain age-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and gene regulatory networks (GRN) regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2 and RUNX1 suggesting a role of these TF in the pathogenesis of the disease. In summary, we demonstrate that the combination of single cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.

Data availability

All the single cell RNA sequencing data is available at Gene Expression Omnibus under accession number GSE180298. The scripts needed to replicate the analysis are deposited on GitHub:https://github.com/mainciburu/scRNA-Hematopoiesis

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marina Ainciburu

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    For correspondence
    mainciburu@alumni.unav.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6483-1901
  2. Teresa Ezponda

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  3. Nerea Berastegui

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  4. Ana Alfonso-Pierola

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  5. Amaia Vilas-Zornoza

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  6. Patxi San Martin-Uriz

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  7. Diego Alignani

    Flow Cytometry Core, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  8. Jose Lamo de Espinosa

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  9. Mikel San Julian

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  10. Tamara Jiménez Solas

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5894-2023
  11. Felix Lopez

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  12. Sandra Muntion

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  13. Fermin Sanchez-Guijo

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  14. Antonieta Molero

    Department of Hematology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
    Competing interests
    No competing interests declared.
  15. Julia Montoro

    Department of Hematology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
    Competing interests
    No competing interests declared.
  16. Guillermo Serrano

    Computational Biology Program, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  17. Aintzane Diaz-Mazkiaran

    Computational Biology Program, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  18. Miren Lasaga

    Translational Bioinformatics Unit, NavarraBiomed, Pamplona, Spain
    Competing interests
    No competing interests declared.
  19. David Gomez-Cabrero

    Translational Bioinformatics Unit, NavarraBiomed, Pamplona, Spain
    Competing interests
    No competing interests declared.
  20. Maria Diez-Campelo

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  21. David Valcarcel

    Department of Hematology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
    Competing interests
    No competing interests declared.
  22. Mikel Hernaez

    Computational Biology Program, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  23. Juan Pablo Romero

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    Juan Pablo Romero, Employed by 10x Genomics since February 2021; this employment had no bearing on this work.
  24. Felipe Prosper

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6115-8790

Funding

Instituto de Salud Carlos III

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Ministerio de Ciencia e Innovación (PhD fellowship FPU18/05488)

  • Marina Ainciburu

Fundación Científica Asociación Española Contra el Cáncer (Investigador AECC award)

  • Teresa Ezponda

H2020 Marie Skłodowska-Curie Actions (Grant Agreement No. 898356)

  • Mikel Hernaez

Federación Española de Enfermedades Raras (PI17/00701,PI19/00726 and PI20/01308)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Centro de Investigación Biomédica en Red de Cáncer (CB16/12/00489 and CB16/12/00225)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Gobierno de Navarra (ERAPerMed MEET-AML 0011-2750-2019-000001; AGATA 0011-1411-2020-000010/0011-1411-2020-000011 and DIAN)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

la Caixa" Foundation " (GR-NET NORMAL-HIT HR20-00871)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Cancer Research UK (C355/A26819)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Fundación Científica Asociación Española Contra el Cáncer (Accelerator Award Program)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Associazione Italiana per la Ricerca sul Cancro (Accelerator Award Program)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Gobierno de Navarra (PhD fellowship 0011-0537-2019-000001)

  • Nerea Berastegui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The samples and data from the patients included in the study were provided by the Biobank of the University of Navarra and were processed according to standard operating procedures. Patients and healthy donors provided informed consent, together with consent for publication. The study was approved by the Clinical Research Ethics Committee of the Clinica Universidad de Navarra, following protocol # 2017.218.

Copyright

© 2023, Ainciburu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,419
    views
  • 597
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Ainciburu
  2. Teresa Ezponda
  3. Nerea Berastegui
  4. Ana Alfonso-Pierola
  5. Amaia Vilas-Zornoza
  6. Patxi San Martin-Uriz
  7. Diego Alignani
  8. Jose Lamo de Espinosa
  9. Mikel San Julian
  10. Tamara Jiménez Solas
  11. Felix Lopez
  12. Sandra Muntion
  13. Fermin Sanchez-Guijo
  14. Antonieta Molero
  15. Julia Montoro
  16. Guillermo Serrano
  17. Aintzane Diaz-Mazkiaran
  18. Miren Lasaga
  19. David Gomez-Cabrero
  20. Maria Diez-Campelo
  21. David Valcarcel
  22. Mikel Hernaez
  23. Juan Pablo Romero
  24. Felipe Prosper
(2023)
Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single cell resolution
eLife 12:e79363.
https://doi.org/10.7554/eLife.79363

Share this article

https://doi.org/10.7554/eLife.79363

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.