Abstract

Lysosomes are essential for cellular recycling, nutrient signaling, autophagy, and pathogenic bacteria and viruses invasion. Lysosomal fusion is fundamental to cell survival and requires HOPS, a conserved heterohexameric tethering complex. On the membranes to be fused, HOPS binds small membrane-associated GTPases and assembles SNAREs for fusion, but how the complex fulfills its function remained speculative. Here, we used cryo-electron microscopy to reveal the structure of HOPS. Unlike previously reported, significant flexibility of HOPS is confined to its extremities, where GTPase binding occurs. The SNARE-binding module is firmly attached to the core, therefore, ideally positioned between the membranes to catalyze fusion. Our data suggest a model for how HOPS fulfills its dual functionality of tethering and fusion and indicate why it is an essential part of the membrane fusion machinery.

Data availability

All diffraction data are deposited in the PDB as indicated in the manuscript. PDB files are mentioned there.

The following data sets were generated

Article and author information

Author details

  1. Dmitry Shvarev

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9776-268X
  2. Jannis Schoppe

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline König

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Perz

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadia Füllbrunn

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephan Kiontke

    Department of Plant Physiology and Photo Biology, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5822-913X
  7. Lars Langemeyer

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4309-0910
  8. Dovile Januliene

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3279-7590
  9. Kilian Schnelle

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8808-594X
  10. Daniel Kümmel

    Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3950-5914
  11. Florian Fröhlich

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8307-2189
  12. Arne Moeller

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    For correspondence
    arne.moeller@uni-osnabrueck.de
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Ungermann

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    For correspondence
    cu@uos.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4331-8695

Funding

Deutsche Forschungsgemeinschaft (SFB 944,P11)

  • Christian Ungermann

Deutsche Forschungsgemeinschaft (SFB 944,P27)

  • Arne Moeller

Deutsche Forschungsgemeinschaft (SFB 944,P20)

  • Florian Fröhlich

Deutsche Forschungsgemeinschaft (UN111/5-6)

  • Arne Moeller
  • Christian Ungermann

Deutsche Forschungsgemeinschaft (INST190/196-1 FUGG)

  • Arne Moeller

Bundesministerium fur Bildung und Forschung (BMBF/DLR 01ED2010)

  • Arne Moeller

Deutsche Forschungsgemeinschaft (SFB 944,P16)

  • Daniel Kümmel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Shvarev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,775
    views
  • 1,271
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Shvarev
  2. Jannis Schoppe
  3. Caroline König
  4. Angela Perz
  5. Nadia Füllbrunn
  6. Stephan Kiontke
  7. Lars Langemeyer
  8. Dovile Januliene
  9. Kilian Schnelle
  10. Daniel Kümmel
  11. Florian Fröhlich
  12. Arne Moeller
  13. Christian Ungermann
(2022)
Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery
eLife 11:e80901.
https://doi.org/10.7554/eLife.80901

Share this article

https://doi.org/10.7554/eLife.80901

Further reading

    1. Cell Biology
    Fabian Link, Sisco Jung ... Brooke Morriswood
    Research Article

    The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.

    1. Cell Biology
    Georgia Maria Sagia, Xenia Georgiou ... Sofia Dimou
    Research Article Updated

    Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.