Microstructural differences in the osteochondral unit of terrestrial and aquatic mammals

  1. Irina AD Mancini
  2. Riccardo Levato
  3. Marlena M Ksiezarczyk
  4. Miguel Dias Castilho
  5. Michael Chen
  6. Mattie HP van Rijen
  7. Lonneke L IJsseldijk
  8. Marja Kik
  9. René van Weeren
  10. Jos Malda  Is a corresponding author
  1. Utrecht University, Netherlands
  2. University Medical Center Utrecht, Netherlands
  3. Eindhoven University of Technology, Netherlands
  4. University of Adelaide, Netherlands

Abstract

During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figure 1.

Article and author information

Author details

  1. Irina AD Mancini

    Department of Clinical Sciences, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Riccardo Levato

    Department of Clinical Sciences, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Marlena M Ksiezarczyk

    Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Miguel Dias Castilho

    Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Chen

    5Department of Mathematical Sciences, University of Adelaide, Adelaide, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Mattie HP van Rijen

    Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Lonneke L IJsseldijk

    Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7288-9118
  8. Marja Kik

    Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. René van Weeren

    Department of Clinical Sciences, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6654-1817
  10. Jos Malda

    Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
    For correspondence
    j.malda@umcutrecht.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9241-7676

Funding

European Commission (3099622 (FP7))

  • Irina AD Mancini
  • René van Weeren
  • Jos Malda

Dutch Arthritis Society (LLP12 and LLP22)

  • Riccardo Levato
  • Miguel Dias Castilho
  • René van Weeren
  • Jos Malda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Mancini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 743
    views
  • 164
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irina AD Mancini
  2. Riccardo Levato
  3. Marlena M Ksiezarczyk
  4. Miguel Dias Castilho
  5. Michael Chen
  6. Mattie HP van Rijen
  7. Lonneke L IJsseldijk
  8. Marja Kik
  9. René van Weeren
  10. Jos Malda
(2023)
Microstructural differences in the osteochondral unit of terrestrial and aquatic mammals
eLife 12:e80936.
https://doi.org/10.7554/eLife.80936

Share this article

https://doi.org/10.7554/eLife.80936

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.