Abstract

Genetic and environmental exposures cause variability in gene expression. Although most genes are affected in a population, their effect sizes vary greatly, indicating the existence of regulatory mechanisms that could amplify or attenuate expression variability. Here, we investigate the relationship between the sequence and transcription start site architectures of promoters and their expression variability across human individuals. We find that expression variability can be largely explained by a promoter's DNA sequence and its binding sites for specific transcription factors. We show that promoter expression variability reflects the biological process of a gene, demonstrating a selective trade-off between stability for metabolic genes and plasticity for responsive genes and those involved in signaling. Promoters with a rigid transcription start site architecture are more prone to have variable expression and to be associated with genetic variants with large effect sizes, while a flexible usage of transcription start sites within a promoter attenuates expression variability and limits genotypic effects. Our work provides insights into the variable nature of responsive genes and reveals a novel mechanism for supplying transcriptional and mutational robustness to essential genes through multiple transcription start site regions within a promoter.

Data availability

Sequencing data have been deposited into the GEO database: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188131

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hjorleifur Einarsson

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Marco Salvatore

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Vaagenso

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Alcaraz

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Jette Bornholdt Lange

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah Rennie

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Robin Andersson

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    robin@binf.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-879X

Funding

Danmarks Frie Forskningsfond (6108-00038)

  • Robin Andersson

European Research Council (638173)

  • Robin Andersson

Novo Nordisk Fonden (NNF18OC0052570)

  • Robin Andersson

Novo Nordisk Fonden (NNF20OC0059796)

  • Robin Andersson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Einarsson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,172
    views
  • 402
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hjorleifur Einarsson
  2. Marco Salvatore
  3. Christian Vaagenso
  4. Nicolas Alcaraz
  5. Jette Bornholdt Lange
  6. Sarah Rennie
  7. Robin Andersson
(2022)
Promoter sequence and architecture determine expression variability and confer robustness to genetic variants
eLife 11:e80943.
https://doi.org/10.7554/eLife.80943

Share this article

https://doi.org/10.7554/eLife.80943

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Chromosomes and Gene Expression
    Ashwin Govindan, Nicholas K Conrad
    Research Article

    O-GlcNAcylation is the reversible post-translational addition of β-N-acetylglucosamine to serine and threonine residues of nuclear and cytoplasmic proteins. It plays an important role in several cellular processes through the modification of thousands of protein substrates. O-GlcNAcylation in humans is mediated by a single essential enzyme, O-GlcNAc transferase (OGT). OGT, together with the sole O-GlcNAcase OGA, form an intricate feedback loop to maintain O-GlcNAc homeostasis in response to changes in cellular O-GlcNAc using a dynamic mechanism involving nuclear retention of its fourth intron. However, the molecular mechanism of this dynamic regulation remains unclear. Using an O-GlcNAc responsive GFP reporter cell line, we identify SFSWAP, a poorly characterized splicing factor, as a trans-acting factor regulating OGT intron detention. We show that SFSWAP is a global regulator of retained intron splicing and exon skipping that primarily acts as a negative regulator of splicing. In contrast, knockdown of SFSWAP leads to reduced inclusion of a ‘decoy exon’ present in the OGT retained intron which may mediate its role in OGT intron detention. Global analysis of decoy exon inclusion in SFSWAP and UPF1 double knockdown cells indicate altered patterns of decoy exon usage. Together, these data indicate a role for SFSWAP as a global negative regulator of pre-mRNA splicing and positive regulator of intron retention.