Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining

  1. Wentao Yu
  2. Lei Kang
  3. Victor TC Tsang
  4. Yan Zhang
  5. Ivy HM Wong
  6. Terence TW Wong  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong

Abstract

Rapid multicolor three-dimensional (3D) imaging for centimeter-scale specimens with subcellular resolution remains a challenging but captivating scientific pursuit. Here, we present a fast, cost-effective, and robust multicolor whole-organ 3D imaging method assisted with ultraviolet (UV) surface excitation and vibratomy-assisted sectioning, termed translational rapid ultraviolet-excited sectioning tomography (TRUST). With an inexpensive UV light-emitting diode (UV-LED) and a color camera, TRUST achieves widefield exogenous molecular-specific fluorescence and endogenous content-rich autofluorescence imaging simultaneously while preserving low system complexity and system cost. Formalin-fixed specimens are stained layer by layer along with serial mechanical sectioning to achieve automated 3D imaging with high staining uniformity and time efficiency. 3D models of all vital organs in wild-type C57BL/6 mice with the 3D structure of their internal components (e.g., vessel network, glomeruli, and nerve tracts) can be reconstructed after imaging with TRUST to demonstrate its fast, robust, and high-content multicolor 3D imaging capability. Moreover, its potential for developmental biology has also been validated by imaging entire mouse embryos (~2 days for the embryo at the embryonic day of 15). TRUST offers a fast and cost-effective approach for high-resolution whole-organ multicolor 3D imaging while relieving researchers from the heavy sample preparation workload.

Data availability

Data availability. The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information.

Article and author information

Author details

  1. Wentao Yu

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Wentao Yu, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4712-3177
  2. Lei Kang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Lei Kang, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
  3. Victor TC Tsang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Victor TC Tsang, has a financial interest in PhoMedics Limited, which, however, did not support this work..
  4. Yan Zhang

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Yan Zhang, has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
  5. Ivy HM Wong

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    Ivy HM Wong, has a financial interest in V Path Limited, which, however, did not support this work..
  6. Terence TW Wong

    Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    ttwwong@ust.hk
    Competing interests
    Terence TW Wong, has a financial interest in PhoMedics Limited, which, however, did not support this work. Has applied for a patent (US Provisional Patent Application No.: 63/254,546) related to the work reported in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6399-758X

Funding

Research Grants Council, University Grants Committee (16208620)

  • Terence TW Wong

Research Grants Council, University Grants Committee (26203619)

  • Terence TW Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in conformity with a laboratory animal protocol approved by the Health, Safety and Environment Office of the Hong Kong University of Science and Technology (HKUST) (license number: AEP16212921).

Copyright

© 2022, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,374
    views
  • 217
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wentao Yu
  2. Lei Kang
  3. Victor TC Tsang
  4. Yan Zhang
  5. Ivy HM Wong
  6. Terence TW Wong
(2022)
Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining
eLife 11:e81015.
https://doi.org/10.7554/eLife.81015

Share this article

https://doi.org/10.7554/eLife.81015

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.