Proteome-wide antigenic profiling in Ugandan cohorts identifies associations between age, exposure intensity, and responses to repeat-containing antigens in Plasmodium falciparum

  1. Madhura Raghavan
  2. Katrina L Kalantar
  3. Elias Duarte
  4. Noam Teyssier
  5. Saki Takahashi
  6. Andrew F Kung
  7. Jayant V Rajan
  8. John Rek
  9. Kevin KA Tetteh
  10. Chris Drakeley
  11. Isaac Ssewanyana
  12. Isabel Rodriguez-Barraquer
  13. Bryan Greenhouse  Is a corresponding author
  14. Joseph L DeRisi  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Chan Zuckerberg Initiative, United States
  3. University of California, Berkeley, United States
  4. Infectious Diseases Research Collaboration, Uganda
  5. London School of Hygiene and Tropical Medicine, United Kingdom

Abstract

Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements - short amino acid sequences repeated within a protein - were significantly enriched in antibody targets. While breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, no such differences were observed for peptides without repeats, suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or less durable in children than responses to regions without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient nature of malaria immunity.

Data availability

All data generated or analyzed during this study are included in the manuscript, supporting files and in the Dryad repository with the doi:doi.org/10.7272/Q69S1P9G

The following data sets were generated

Article and author information

Author details

  1. Madhura Raghavan

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Katrina L Kalantar

    Chan Zuckerberg Initiative, Redwood City, United States
    Competing interests
    No competing interests declared.
  3. Elias Duarte

    University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2541-5504
  4. Noam Teyssier

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Saki Takahashi

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Andrew F Kung

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Jayant V Rajan

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. John Rek

    Infectious Diseases Research Collaboration, Kampala, Uganda
    Competing interests
    No competing interests declared.
  9. Kevin KA Tetteh

    London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  10. Chris Drakeley

    London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4863-075X
  11. Isaac Ssewanyana

    Infectious Diseases Research Collaboration, Kampala, Uganda
    Competing interests
    No competing interests declared.
  12. Isabel Rodriguez-Barraquer

    University of California, San Francisco, San Francisco, United States
    Competing interests
    Isabel Rodriguez-Barraquer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6784-1021
  13. Bryan Greenhouse

    University of California, San Francisco, San Francisco, United States
    For correspondence
    bryan.greenhouse@ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0287-9111
  14. Joseph L DeRisi

    University of California, San Francisco, San Francisco, United States
    For correspondence
    joe@derisilab.ucsf.edu
    Competing interests
    Joseph L DeRisi, Paid scientific advisor for Allen & Co. Paid scientific advisor for the Public Health Company, Inc. and holds stock options. Founder and holding stock options in VeriPhi Health, Inc...
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4611-9205

Funding

Chan Zuckerberg Biohub

  • Joseph L DeRisi

Chan Zuckerberg Biohub (Investigator program)

  • Bryan Greenhouse

National Institutes of Health (A1089674 (East Africa ICEMR))

  • Bryan Greenhouse

National Institutes of Health (AI119019)

  • Bryan Greenhouse

National Institutes of Health (AI144048)

  • Bryan Greenhouse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was reviewed and approved by the Makerere University School of Medicine Research and Ethics Committee (Identification numbers 2011-149 and 2011-167), the London School of Hygiene and Tropical Medicine Ethics Committee (Identification numbers 5943 and 5944), the University of California, San Francisco, Committee on Human Research (Identification numbers 11-05539 and 11-05995) and the Uganda National Council for Science and Technology (Identification numbers HS-978 and HS-1019). Written informed consent was obtained from all participants in the study. For children, this was obtained from the parents or guardians. The US control samples were from New York Blood Center and these samples came from volunteer blood donors who consented as follows, "I authorize NYBC to use or transfer my blood or portions of it for any purpose it deems appropriate, including transfusion, research, or commercial purposes."

Copyright

© 2023, Raghavan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,931
    views
  • 391
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madhura Raghavan
  2. Katrina L Kalantar
  3. Elias Duarte
  4. Noam Teyssier
  5. Saki Takahashi
  6. Andrew F Kung
  7. Jayant V Rajan
  8. John Rek
  9. Kevin KA Tetteh
  10. Chris Drakeley
  11. Isaac Ssewanyana
  12. Isabel Rodriguez-Barraquer
  13. Bryan Greenhouse
  14. Joseph L DeRisi
(2023)
Proteome-wide antigenic profiling in Ugandan cohorts identifies associations between age, exposure intensity, and responses to repeat-containing antigens in Plasmodium falciparum
eLife 12:e81401.
https://doi.org/10.7554/eLife.81401

Share this article

https://doi.org/10.7554/eLife.81401

Further reading

    1. Immunology and Inflammation
    Yan Qian, Qiannv Liu ... Pengyan Xia
    Research Article

    The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammasome-mediated inflammatory cytokines are crucial for host defense against bacterial infections. We found that P. aeruginosa infection activates the non-canonical inflammasome in macrophages, yet it inhibits the downstream activation of the NLRP3 inflammasome. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administration of a specific peptide that inhibits caspase-11 cleavage of VgrG2b significantly improves mouse survival during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.

    1. Immunology and Inflammation
    2. Medicine
    Ole Bæk, Tik Muk ... Duc Ninh Nguyen
    Research Article

    Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.