The genetic risk of gestational diabetes in South Asian women
Abstract
South Asian women are at increased risk of developing gestational diabetes (GDM). Few studies have investigated the genetic contributions to GDM risk. We investigated the association of a type 2 diabetes (T2D) polygenic risk score (PRS), on its own, and with GDM risk factors, on GDM-related traits using data from two birth cohorts in which South Asian women were enrolled during pregnancy. 837 and 4,372 pregnant South Asian women from the SouTh Asian BiRth CohorT (START) and Born in Bradford (BiB) cohort studies underwent a 75-gram glucose tolerance test. PRSs were derived using GWAS results from an independent multi-ethnic study (~18% South Asians). Associations with fasting plasma glucose (FPG); 2h post-load glucose (2hG); area under the curve glucose; and GDM were tested using linear and logistic regressions. The population attributable fraction (PAF) of the PRS was calculated. Every 1 SD increase in the PRS was associated with a 0.085 mmol/L increase in FPG ([95%CI=0.07-0.10], P=2.85 × 10-20); 0.21 mmol/L increase in 2hG ([95%CI=0.16-0.26], P=5.49 × 10-16); and a 45% increase in the risk of GDM ([95%CI=32-60%], P=2.27 × 10-14), independent of parental history of diabetes and other GDM risk factors. PRS tertile 3 accounted for 12.5% of the population's GDM alone, and 21.7% when combined with family history. A few weak PRS and GDM risk factors interactions modulating FPG and GDM were observed. Together, these results show that a T2D PRS and family history of diabetes are strongly and independently associated with multiple GDM-related traits in women of South Asian descent, an effect that could be modulated by other environmental factors.
Data availability
Data from START is not publicly available, since the study is bound by consent which indicates the data will not be used by an outside group. Requests for collaboration or replication will be considered for research purposes only (no commercial use allowed, as per the study's informed consent). Requests should be addressed to the study's principal investigator (Sonia Anand, anands@mcmaster.ca) via a form which will be provided upon request by emailing natcampb@mcmaster.ca. The request will be evaluated by PIs and co-investigators, and projects deemed of scientific interest will be further evaluated/validated by local REB chair. Born in Bradford data are available for research purposes only by sending an expression of interest form downloadable from https://borninbradford.nhs.uk/wp-content/uploads/BiB_EoI_v3.1_10.05.21.doct to borninbradford@bthft.nhs.uk . The proposal will be reviewed by BiB's executive team. If the request is approved, the requester will be asked to sign a Data Sharing Contract and a Data Sharing Agreement. Full details on how to access data and forms can be found here https://borninbradford.nhs.uk/research/how-to-access-data/. The code used to analyze the data is available at https://github.com/AmelLamri/Paper_T2dPrsGdm_StartBiB. All Sharable processed versions of the datasets used in the manuscript are made available as supplementary material or at https://github.com/AmelLamri/Paper_T2dPrsGdm_StartBiB.
Article and author information
Author details
Funding
Canadian Institutes of Health Research (Project grant 298104;Foundation grant number: FDN-143255)
- Sonia S Anand
Bristol NIHR Biomedical Research Center
- Deborah A Lawlor
UK Medical Research Council (MC_UU_00011/6)
- Deborah A Lawlor
British Heart Foundation (CH/F/20/90003)
- Deborah A Lawlor
Canada Research Chairs
- Sonia S Anand
Heart and Stroke Foundation/Michael G. DeGroote Chair
- Sonia S Anand
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All START and BiB participants provided informed consent. The START study was approved by local ethics committees (Hamilton Integrated Research Ethics Board [ID:10-640], William Osler Health System [ID:11-0001], and Trillium Health Partners [RCC:11-018, ID:492]). Ethical approval for all aspects of the research was granted by Bradford Research Ethics Committee [Ref 07/H1302/112].
Copyright
© 2022, Lamri et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,703
- views
-
- 134
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Genetics and Genomics
Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.
-
- Genetics and Genomics
The DYRK1A enzyme is a pivotal contributor to frequent and severe episodes of otitis media in Down syndrome, positioning it as a promising target for therapeutic interventions.