Structure of Geobacter OmcZ filaments suggests extracellular cytochrome polymers evolved independently multiple times

  1. Fengbin Wang
  2. Chi Ho Chan
  3. Victor Suciu
  4. Khawla Mustafa
  5. Madeline Ammend
  6. Dong Si
  7. Allon I Hochbaum  Is a corresponding author
  8. Edward H Egelman  Is a corresponding author
  9. Daniel R Bond  Is a corresponding author
  1. University of Virginia, United States
  2. University of Minnesota, United States
  3. University of Washington Bothell, United States
  4. University of California, Irvine, United States

Abstract

While early genetic and low-resolution structural observations suggested that extracellular conductive filaments on metal reducing organisms such as Geobacter were composed of Type IV pili, it has now been established that bacterial c-type cytochromes can polymerize to form extracellular filaments capable of long-range electron transport. Atomic structures exist for two such cytochrome filaments, formed from the hexaheme cytochrome OmcS and the tetraheme cytochrome OmcE. Due to the highly conserved heme packing within the central OmcS and OmcE cores, and shared pattern of heme coordination between subunits, it has been suggested that these polymers have a common origin. We have now used cryo-EM to determine the structure of a third extracellular filament, formed from the Geobacter sulfurreducens octaheme cytochrome, OmcZ. In contrast to the linear heme chains in OmcS and OmcE from the same organism, the packing of hemes, heme:heme angles, and between-subunit heme coordination is quite different in OmcZ. A branched heme arrangement within OmcZ leads to a highly surface exposed heme in every subunit, which may account for the formation of conductive biofilm networks, and explain the higher measured conductivity of OmcZ filaments. This new structural evidence suggests that conductive cytochrome polymers arose independently on more than one occasion from different ancestral multiheme proteins.

Data availability

PDB (model)deposited with accession code 8D9MEMDB (map)deposited with accession code EMD-27266

The following data sets were generated

Article and author information

Author details

  1. Fengbin Wang

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  2. Chi Ho Chan

    Department of Plant and MIcrobial Biology, University of Minnesota, St. Paul, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6596-3436
  3. Victor Suciu

    Division of Computing and Software Systems, University of Washington Bothell, Bothell, United States
    Competing interests
    No competing interests declared.
  4. Khawla Mustafa

    Department of Chemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  5. Madeline Ammend

    Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, United States
    Competing interests
    No competing interests declared.
  6. Dong Si

    Division of Computing and Software Systems, University of Washington Bothell, Bothell, United States
    Competing interests
    No competing interests declared.
  7. Allon I Hochbaum

    Department of Chemistry, University of California, Irvine, Irvine, United States
    For correspondence
    hochbaum@uci.edu
    Competing interests
    No competing interests declared.
  8. Edward H Egelman

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    For correspondence
    egelman@virginia.edu
    Competing interests
    Edward H Egelman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4844-5212
  9. Daniel R Bond

    Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, United States
    For correspondence
    dbond@umn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8083-7107

Funding

National Institutes of Health (GM122510)

  • Edward H Egelman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,339
    views
  • 439
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fengbin Wang
  2. Chi Ho Chan
  3. Victor Suciu
  4. Khawla Mustafa
  5. Madeline Ammend
  6. Dong Si
  7. Allon I Hochbaum
  8. Edward H Egelman
  9. Daniel R Bond
(2022)
Structure of Geobacter OmcZ filaments suggests extracellular cytochrome polymers evolved independently multiple times
eLife 11:e81551.
https://doi.org/10.7554/eLife.81551

Share this article

https://doi.org/10.7554/eLife.81551

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.