MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice

Abstract

Wolfram syndrome 1 (WS1) is a rare genetic disorder caused by mutations in the WFS1 gene leading to a wide spectrum of clinical dysfunctions, among which blindness, diabetes and neurological deficits are the most prominent. WFS1 encodes for the endoplasmic reticulum (ER) resident transmembrane protein wolframin with multiple functions in ER processes. However, the WFS1-dependent etiopathology in retinal cells is unknown. Herein, we showed that Wfs1 mutant mice developed early retinal electrophysiological impairments followed by marked visual loss. Interestingly, axons and myelin disruption in the optic nerve preceded the degeneration of the retinal ganglion cell bodies in the retina. Transcriptomics at pre-degenerative stage revealed the STAT3-dependent activation of proinflammatory glial markers with reduction of the homeostatic and pro-survival factors glutamine synthetase and BDNF. Furthermore, label-free comparative proteomics identified a significant reduction of the monocarboxylate transport isoform 1 (MCT1) and its partner basigin that are highly enriched on retinal glia and myelin-forming oligodendrocytes in optic nerve together with wolframin. Loss of MCT1 caused a failure in lactate transfer from glial to neuronal cell bodies and axons leading to a chronic hypometabolic state. Thus, this bioenergetic impairment is occurring concurrently both within the axonal regions and cell bodies of the retinal ganglion cells, selectively endangering their survival while impacting less on other retinal cells. This metabolic dysfunction occurs months before the frank RGC degeneration suggesting an extended time-window for intervening with new therapeutic strategies focused on boosting retinal and optic nerve bioenergetics in WS1.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE42357.

The following data sets were generated

Article and author information

Author details

  1. Greta Rossi

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriele Ordazzo

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1850-0375
  3. Niccolò N Vanni

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Valerio Castoldi

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Angelo Iannielli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Dario Di Silvestre

    Institute of Technologies in Biomedicine, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Edoardo Bellini

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9766-7685
  8. Letizia Bernardo

    Institute of Technologies in Biomedicine, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Serena Giannelli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Mirko Luoni

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5006-1827
  11. Sharon Muggeo

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7135-9780
  12. Leocani Letizia

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  13. PierLuigi Mauri

    Institute of Technologies in Biomedicine, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Vania Broccoli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    broccoli.vania@hsr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4050-0926

Funding

Italian Ministry of Health (RF2019-12370396)

  • PierLuigi Mauri

Elixir Implementation Study Proteomics 2021-23 (EISP-23-072)

  • PierLuigi Mauri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Rossi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,346
    views
  • 199
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Greta Rossi
  2. Gabriele Ordazzo
  3. Niccolò N Vanni
  4. Valerio Castoldi
  5. Angelo Iannielli
  6. Dario Di Silvestre
  7. Edoardo Bellini
  8. Letizia Bernardo
  9. Serena Giannelli
  10. Mirko Luoni
  11. Sharon Muggeo
  12. Leocani Letizia
  13. PierLuigi Mauri
  14. Vania Broccoli
(2023)
MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice
eLife 12:e81779.
https://doi.org/10.7554/eLife.81779

Share this article

https://doi.org/10.7554/eLife.81779

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.