Kindlin-2 inhibits TNF/NF-κB-Caspase 8 pathway in hepatocytes to maintain liver development and function

  1. Huanqing Gao
  2. Yiming Zhong
  3. Liang Zhou
  4. Sixiong Lin
  5. Xiaoting Hou
  6. Zhen Ding
  7. Yan Li
  8. Qing Yao
  9. Huiling Cao
  10. Xuenong Zou
  11. Di Chen
  12. Xiaochun Bai  Is a corresponding author
  13. Guozhi Xiao  Is a corresponding author
  1. Southern Taiwan University of Science and Technology, China
  2. Southern University of Science and Technology, China
  3. Sun Yat-sen University, China
  4. Chinese Academy of Sciences, China
  5. Southern Medical University, China

Abstract

Inflammatory liver diseases are a major cause of morbidity and mortality worldwide; however, underlying mechanisms are incompletely understood. Here we show that deleting the focal adhesion protein Kindlin-2 expression in hepatocytes using the Alb-Cre transgenic mice causes a severe inflammation, resulting in premature death. Kindlin-2 loss accelerates hepatocyte apoptosis with subsequent compensatory cell proliferation and accumulation of the collagenous extracellular matrix, leading to massive liver fibrosis and dysfunction. Mechanistically, Kindlin-2 loss abnormally activates the tumor necrosis factor (TNF) pathway. Blocking activation of the TNF signaling pathway by deleting TNF receptor or deletion of Caspase 8 expression in hepatocytes essentially restores liver function and prevents premature death caused by Kindlin-2 loss. Finally, of translational significance, adeno-associated virus mediated overexpression of Kindlin-2 in hepatocytes attenuates the D-galactosamine and lipopolysaccharide-induced liver injury and death in mice. Collectively, we establish that Kindlin-2 acts as a novel intrinsic inhibitor of the TNF pathway to maintain liver homeostasis and may define a useful therapeutic target for liver diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-7 and supplementary figures.

Article and author information

Author details

  1. Huanqing Gao

    Department of Biochemistry, Southern Taiwan University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8567-3583
  2. Yiming Zhong

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  3. Liang Zhou

    Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
    Competing interests
    No competing interests declared.
  4. Sixiong Lin

    Department of Spinal Surgery, Sun Yat-sen University, Guangzhou, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7155-5044
  5. Xiaoting Hou

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Zhen Ding

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  7. Yan Li

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  8. Qing Yao

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  9. Huiling Cao

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  10. Xuenong Zou

    Department of Spinal Surgery, Sun Yat-sen University, Guangzhou, China
    Competing interests
    No competing interests declared.
  11. Di Chen

    Research Center for Computer-aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
    Competing interests
    Di Chen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4258-3457
  12. Xiaochun Bai

    Department of Cell Biology, Southern Medical University, Guangzhou, China
    For correspondence
    baixc15@smu.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9631-4781
  13. Guozhi Xiao

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    xiaogz@sustech.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4269-2450

Funding

National Key Research and Development Program of China (2019YFA0906004)

  • Guozhi Xiao

National Natural Science Foundation of China (82230081,82250710175,82172375,81991513 and 81870532)

  • Guozhi Xiao

Shenzhen Municipal Science and Technology Innovation Council (JCYJ20180302174246105)

  • Huanqing Gao

Shenzhen Municipal Science and Technology Innovation Council (JCYJ20220818100617036,ZDSYS20140509142721429)

  • Guozhi Xiao

Guangdong Provincial Science and Technology Innovation Council Grant (2017B030301018)

  • Guozhi Xiao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved and conducted in the specific pathogen free (SPF) Experimental Animal Center of Southern University of Science and Technology (Approval number: 20200074).

Copyright

© 2023, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 900
    views
  • 177
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huanqing Gao
  2. Yiming Zhong
  3. Liang Zhou
  4. Sixiong Lin
  5. Xiaoting Hou
  6. Zhen Ding
  7. Yan Li
  8. Qing Yao
  9. Huiling Cao
  10. Xuenong Zou
  11. Di Chen
  12. Xiaochun Bai
  13. Guozhi Xiao
(2023)
Kindlin-2 inhibits TNF/NF-κB-Caspase 8 pathway in hepatocytes to maintain liver development and function
eLife 12:e81792.
https://doi.org/10.7554/eLife.81792

Share this article

https://doi.org/10.7554/eLife.81792

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.