Abstract

Actin isoforms organize into distinct networks that are essential for the normal function of eukaryotic cells. Despite a high level of sequence and structure conservation, subtle differences in their design principles determine the interaction with myosin motors and actin-binding proteins (ABPs). Therefore, identifying how the structure of actin isoforms relates to function is important for our understanding of normal cytoskeletal physiology. Here, we report the high-resolution structures of filamentous skeletal muscle a-actin (3.37Å), cardiac muscle a-actin (3.07Å), ß-actin (2.99Å), and g-actin (3.38Å) in the Mg2+·ADP state with their native PTMs. The structures revealed isoform-specific conformations of the N-terminus that shift closer to the filament surface upon myosin binding, thereby establishing isoform-specific interfaces. Collectively, the structures of single-isotype, post-translationally modified bare skeletal muscle a-actin, cardiac muscle a-actin, ß-actin, and g-actin reveal general principles, similarities, and differences between isoforms. They complement the repertoire of known actin structures and allow for a comprehensive understanding of in vitro and in vivo functions of actin isoforms.

Data availability

All the structures and electron density maps generated have been deposited in the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB). The PDB and EMDB entries are 8DMX and EMD-27548; 8DMY and EMD-27549; 8DNH and EMD-27572; 8DNF and EMD-27565.

The following data sets were generated

Article and author information

Author details

  1. Amandeep Singh Arora

    Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1045-1967
  2. Hsiang-Ling Huang

    Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  3. Ramanpreet Singh

    Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  4. Yoshie Narui

    Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  5. Andrejus Suchenko

    Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
  6. Tomoyuki Hatano

    Division of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9092-3989
  7. Sarah M Heissler

    Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  8. Mohan K Balasubramanian

    Division of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    Mohan K Balasubramanian, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1292-8602
  9. Krishna Chinthalapudi

    Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
    For correspondence
    krishna.chinthalapudi@osumc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3669-561X

Funding

National Institutes of Health (R01GM143539)

  • Krishna Chinthalapudi

National Institutes of Health (K22HL131869)

  • Sarah M Heissler

Wellcome Trust (203276/Z/16/Z)

  • Mohan K Balasubramanian

European Research Council (ERC-2014-ADG No. 671083)

  • Mohan K Balasubramanian

Biotechnology and Biological Sciences Research Council (BB/S003789/1)

  • Mohan K Balasubramanian

National Institutes of Health (R01GM143414)

  • Sarah M Heissler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Arora et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,411
    views
  • 553
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amandeep Singh Arora
  2. Hsiang-Ling Huang
  3. Ramanpreet Singh
  4. Yoshie Narui
  5. Andrejus Suchenko
  6. Tomoyuki Hatano
  7. Sarah M Heissler
  8. Mohan K Balasubramanian
  9. Krishna Chinthalapudi
(2023)
Structural insights into actin isoforms
eLife 12:e82015.
https://doi.org/10.7554/eLife.82015

Share this article

https://doi.org/10.7554/eLife.82015

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.