Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification

  1. Zhanying Feng
  2. Zhana Duren
  3. Jingxue Xin
  4. Qiuyue Yuan
  5. Yaoxi He
  6. Bing Su
  7. Wing Hung Wong  Is a corresponding author
  8. Yong Wang  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Clemson University, United States
  3. Stanford University, United States

Abstract

Systems genetics holds the promise to decipher complex traits by interpreting their associated SNPs through gene regulatory networks derived from comprehensive multi-omics data of cell types, tissues, and organs. Here, we propose SpecVar to integrate paired chromatin accessibility and gene expression data into context-specific regulatory network atlas and regulatory categories, conduct heritability enrichment analysis with GWAS summary statistics, identify relevant tissues, and depict common genetic factors acting in the shared regulatory networks between traits by relevance correlation. Our method improves power upon existing approaches by associating SNPs with context-specific regulatory elements to assess heritability enrichments and by explicitly prioritizing gene regulations underlying relevant tissues. Ablation studies, independent data validation, and comparison experiments with existing methods on GWAS of six phenotypes show that SpecVar can improve heritability enrichment, accurately detect relevant tissues, and reveal causal regulations. Furthermore, SpecVar correlates the relevance patterns for pairs of phenotypes and better reveals shared SNP associated regulations of phenotypes than existing methods. Studying GWAS of 206 phenotypes in UK-Biobank demonstrates that SpecVar leverages the context-specific regulatory network atlas to prioritize phenotypes' relevant tissues and shared heritability for biological and therapeutic insights. SpecVar provides a powerful way to interpret SNPs via context-specific regulatory networks and is available at https://github.com/AMSSwanglab/SpecVar.

Data availability

Codes and regulatory network resources are available at https://github.com/AMSSwanglab/SpecVar. Expression and chromatin accessibility data were summarized in Table S1. GWAS data used: GWAS summary statistics of LDL and TC were downloaded at http://csg.sph.umich.edu/willer/public/lipids2013/; GWAS summary statistics of EA (GCST006442), CP (GCST006572), BrainShape (GCST90012880-GCST90013164), and Face (GCST009464) were downloaded at GWAS catalog https://www.ebi.ac.uk/gwas/summary-statistics; GWAS summary statistics of UK-Biobank were downloaded at http://www.nealelab.is/uk-biobank. The LDSC genetic correlation and phenotypic correlation computed from individual phenotypic data were downloaded at https://ukbb-rg.hail.is/.

Article and author information

Author details

  1. Zhanying Feng

    Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhana Duren

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jingxue Xin

    Department of Statistics, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qiuyue Yuan

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yaoxi He

    Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bing Su

    Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wing Hung Wong

    Department of Statistics, Stanford University, Palo Alto, United States
    For correspondence
    whwong@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Yong Wang

    Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
    For correspondence
    zyfeng@amss.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0695-5273

Funding

National Key Research and Development Program of China (2022YFA1004800,2020YFA0712402)

  • Yong Wang

Strategic Priority Research Program of the Chinese Academy of Science (XDPB17)

  • Yong Wang

CAS Young Scientists in Basic esearch (YSBR-077)

  • Yong Wang

National Natural Science Foundation of China (12025107,11871463,11688101)

  • Yong Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,121
    views
  • 116
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhanying Feng
  2. Zhana Duren
  3. Jingxue Xin
  4. Qiuyue Yuan
  5. Yaoxi He
  6. Bing Su
  7. Wing Hung Wong
  8. Yong Wang
(2022)
Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification
eLife 11:e82535.
https://doi.org/10.7554/eLife.82535

Share this article

https://doi.org/10.7554/eLife.82535

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.