Axonal T3 uptake and transport can trigger thyroid hormone signaling in the brain

  1. Federico Salas-Lucia
  2. Csaba Fekete
  3. Richárd Sinko
  4. Péter Egri
  5. Kristóf Rada
  6. Yvette Ruska
  7. Balázs Gereben  Is a corresponding author
  8. Antonio Bianco  Is a corresponding author
  1. University of Chicago Medical Center, United States
  2. Institute of Experimental Medicine, Hungary
  3. University of Chicago, United States

Abstract

The development of the brain, as well as mood and cognitive functions, are affected by thyroid hormone (TH) signaling. Neurons are the critical cellular target for TH action, with T3 regulating the expression of important neuronal gene sets. However, the steps involved in T3 signaling remain poorly known given that neurons express high levels of type 3 deiodinase (D3), which inactivates both T4 and T3. To investigate this mechanism, we used a compartmentalized microfluid device and identified a novel neuronal pathway of T3 transport and action that involves axonal T3 uptake into clathrin-dependent, endosomal/non-degradative lysosomes (NDLs). NDLs-containing T3 are retrogradely transported via microtubules, delivering T3 to the cell nucleus, and doubling the expression of a T3-responsive reporter gene. The NDLs also contain the monocarboxylate transporter 8 (Mct8) and D3, which transport and inactivate T3, respectively. Notwithstanding, T3 gets away from degradation because D3's active center is in the cytosol. Moreover, we used a unique mouse system to show that T3 implanted in specific brain areas can trigger selective signaling in distant locations, as far as the contralateral hemisphere. These findings provide a pathway for L-T3 to reach neurons and resolve the paradox of T3 signaling in the brain amid high D3 activity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for supplementary figures 2

Article and author information

Author details

  1. Federico Salas-Lucia

    Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago Medical Center, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4141-5790
  2. Csaba Fekete

    Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8206-562X
  3. Richárd Sinko

    Laboratory of Molecular Cell Metabolism, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    No competing interests declared.
  4. Péter Egri

    Laboratory of Molecular Cell Metabolism, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    No competing interests declared.
  5. Kristóf Rada

    Laboratory of Molecular Cell Metabolism, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    No competing interests declared.
  6. Yvette Ruska

    Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    No competing interests declared.
  7. Balázs Gereben

    Laboratory of Molecular Cell Metabolism, Institute of Experimental Medicine, Budapest, Hungary
    For correspondence
    gereben.balazs@koki.mta.hu
    Competing interests
    No competing interests declared.
  8. Antonio Bianco

    Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, United States
    For correspondence
    abianco1@uchicago.edu
    Competing interests
    Antonio Bianco, Consultant fees: AbbVie, Synthonics, Sention, Thyron, Accella.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7737-6813

Funding

The Hungarian National Brain Research Program 2 (NRDIO K125247)

  • Csaba Fekete

National Institute of Diabetes and Digestive and Kidney Diseases (DK58538)

  • Balázs Gereben

National Institute of Diabetes and Digestive and Kidney Diseases (DK58538,DK65055)

  • Antonio Bianco

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee at the University of Chicago (#72577) or by the Animal Welfare Committee at the Institute of ExperimentalMedicine and followed the American Thyroid Association Guide to investigating TH economy and action in rodents and cell models (52).

Copyright

© 2023, Salas-Lucia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,210
    views
  • 191
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Federico Salas-Lucia
  2. Csaba Fekete
  3. Richárd Sinko
  4. Péter Egri
  5. Kristóf Rada
  6. Yvette Ruska
  7. Balázs Gereben
  8. Antonio Bianco
(2023)
Axonal T3 uptake and transport can trigger thyroid hormone signaling in the brain
eLife 12:e82683.
https://doi.org/10.7554/eLife.82683

Share this article

https://doi.org/10.7554/eLife.82683

Further reading

    1. Medicine
    Gabriel O Heckerman, Eileen Tzng ... Adrienne Mueller
    Research Article

    Background: Several fields have described low reproducibility of scientific research and poor accessibility in research reporting practices. Although previous reports have investigated accessible reporting practices that lead to reproducible research in other fields, to date, no study has explored the extent of accessible and reproducible research practices in cardiovascular science literature.

    Methods: To study accessibility and reproducibility in cardiovascular research reporting, we screened 639 randomly selected articles published in 2019 in three top cardiovascular science publications: Circulation, the European Heart Journal, and the Journal of the American College of Cardiology (JACC). Of those 639 articles, 393 were empirical research articles. We screened each paper for accessible and reproducible research practices using a set of accessibility criteria including protocol, materials, data, and analysis script availability, as well as accessibility of the publication itself. We also quantified the consistency of open research practices within and across cardiovascular study types and journal formats.

    Results: We identified that fewer than 2% of cardiovascular research publications provide sufficient resources (materials, methods, data, and analysis scripts) to fully reproduce their studies. Of the 639 articles screened, 393 were empirical research studies for which reproducibility could be assessed using our protocol, as opposed to commentaries or reviews. After calculating an accessibility score as a measure of the extent to which an article makes its resources available, we also showed that the level of accessibility varies across study types with a score of 0.08 for Case Studies or Case Series and 0.39 for Clinical Trials (p = 5.500E-5) and across journals (0.19 through 0.34, p = 1.230E-2). We further showed that there are significant differences in which study types share which resources.

    Conclusion: Although the degree to which reproducible reporting practices are present in publications varies significantly across journals and study types, current cardiovascular science reports frequently do not provide sufficient materials, protocols, data, or analysis information to reproduce a study. In the future, having higher standards of accessibility mandated by either journals or funding bodies will help increase the reproducibility of cardiovascular research.

    Funding: Authors Gabriel Heckerman, Arely Campos-Melendez, and Chisomaga Ekwueme were supported by an NIH R25 grant from the National Heart, Lung and Blood Institute (R25HL147666). Eileen Tzng was supported by an AHA Institutional Training Award fellowship (18UFEL33960207).

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).