Reserpine maintains photoreceptor survival in retinal ciliopathy by resolving proteostasis imbalance and ciliogenesis defects

  1. Holly Y Chen
  2. Manju Swaroop
  3. Samantha Papal
  4. Anupam Mondal
  5. Hyun Beom Song
  6. Laura Campello
  7. Gregory Tawa
  8. Florian Regent
  9. Hiroko Shimada
  10. Kunio Nagashima
  11. Natalia de Val
  12. Samuel G Jacobson
  13. Wei Zheng
  14. Anand Swaroop  Is a corresponding author
  1. National Eye Institute, United States
  2. National Center for Advancing Translational Sciences, United States
  3. Frederick National Laboratory for Cancer Research, United States
  4. University of Pennsylvania, United States

Abstract

Ciliopathies manifest from sensory abnormalities to syndromic disorders with multi-organ pathologies, with retinal degeneration a highly penetrant phenotype. Photoreceptor cell death is a major cause of incurable blindness in retinal ciliopathies. To identify drug candidates to maintain photoreceptor survival, we performed an unbiased, high-throughput screening of over 6,000 bioactive small molecules using retinal organoids differentiated from induced pluripotent stem cells (iPSC) of rd16 mouse, which is a model of Leber congenital amaurosis (LCA) type 10 caused by mutations in the cilia-centrosomal gene CEP290. We identified five non-toxic positive hits, including the lead molecule reserpine, which maintained photoreceptor development and survival in rd16 organoids. Reserpine also improved photoreceptors in retinal organoids derived from induced pluripotent stem cells of LCA10 patients and in rd16 mouse retina in vivo. Reserpine-treated patient organoids revealed modulation of signaling pathways related to cell survival/death, metabolism, and proteostasis. Further investigation uncovered dysregulation of autophagy associated with compromised primary cilium biogenesis in patient organoids and rd16 mouse retina. Reserpine partially restored the balance between autophagy and the ubiquitin-proteasome system at least in part by increasing the cargo adaptor p62, resulting in improved primary cilium assembly. Our study identifies effective drug candidates in preclinical studies of CEP290 retinal ciliopathies through cross-species drug discovery using iPSC-derived organoids, highlights the impact of proteostasis in the pathogenesis of ciliopathies, and provides new insights for treatments of retinal neurodegeneration.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. RNA-seq data are available through GEO accession #206959.

The following data sets were generated

Article and author information

Author details

  1. Holly Y Chen

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    Competing interests
    Holly Y Chen, Listed as inventor on a patent application related to the small molecules in this study by National Institutes of Health (PCT/US2021/040157).
  2. Manju Swaroop

    National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, Rockville, United States
    Competing interests
    Manju Swaroop, Listed as inventor on a patent application related to the small molecules in this study by National Institutes of Health (PCT/US2021/040157).
  3. Samantha Papal

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    Competing interests
    Samantha Papal, Listed as inventor on a patent application related to the small molecules in this study by National Institutes of Health (PCT/US2021/040157).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9417-6215
  4. Anupam Mondal

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    Competing interests
    Anupam Mondal, Listed as inventor on a patent application related to the small molecules in this study by National Institutes of Health (PCT/US2021/040157).
  5. Hyun Beom Song

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Laura Campello

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Gregory Tawa

    National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, Rockville, United States
    Competing interests
    Gregory Tawa, Listed as inventor on a patent application related to the small molecules in this study by National Institutes of Health (PCT/US2021/040157).
  8. Florian Regent

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  9. Hiroko Shimada

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Kunio Nagashima

    Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  11. Natalia de Val

    Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  12. Samuel G Jacobson

    Department of Ophthalmology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  13. Wei Zheng

    National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, Rockville, United States
    Competing interests
    Wei Zheng, Listed as inventor on a patent application related to the small molecules in this study by National Institutes of Health (PCT/US2021/040157).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1034-0757
  14. Anand Swaroop

    Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, United States
    For correspondence
    swaroopa@nei.nih.gov
    Competing interests
    Anand Swaroop, Listed as inventor on a patent application related to the small molecules in this study by National Institutes of Health (PCT/US2021/040157).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1975-1141

Funding

National Eye Institute (Z01EY000546)

  • Anand Swaroop

National Eye Institute (Z01EY000450)

  • Anand Swaroop

National Center for Advancing Translational Sciences (ZIATR000018-06)

  • Wei Zheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the Animal Care and Use committee of the National Eye Institutes (Animal study protocol NEI-650) and adhered to ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,093
    views
  • 434
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Holly Y Chen
  2. Manju Swaroop
  3. Samantha Papal
  4. Anupam Mondal
  5. Hyun Beom Song
  6. Laura Campello
  7. Gregory Tawa
  8. Florian Regent
  9. Hiroko Shimada
  10. Kunio Nagashima
  11. Natalia de Val
  12. Samuel G Jacobson
  13. Wei Zheng
  14. Anand Swaroop
(2023)
Reserpine maintains photoreceptor survival in retinal ciliopathy by resolving proteostasis imbalance and ciliogenesis defects
eLife 12:e83205.
https://doi.org/10.7554/eLife.83205

Share this article

https://doi.org/10.7554/eLife.83205

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.