Structures of RecBCD in complex with phage-encoded inhibitor proteins reveal distinctive strategies for evasion of a bacterial immunity hub

  1. Martin Wilkinson
  2. Oliver J Wilkinson
  3. Connie Feyerherm
  4. Emma E Fletcher
  5. Dale B Wigley  Is a corresponding author
  6. Mark Simon Dillingham  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Bristol, United Kingdom

Abstract

Following infection of bacterial cells, bacteriophage modulate double-stranded DNA break repair pathways to protect themselves from host immunity systems and prioritise their own recombinases. Here we present biochemical and structural analysis of two phage proteins, gp5.9 and Abc2, which target the DNA break resection complex RecBCD. These exemplify two contrasting mechanisms for control of DNA break repair in which the RecBCD complex is either inhibited or co-opted for the benefit of the invading phage. Gp5.9 completely inhibits RecBCD by preventing it from binding to DNA. The RecBCD-gp5.9 structure shows that gp5.9 acts by substrate mimicry, binding predominantly to the RecB arm domain and competing sterically for the DNA binding site. Gp5.9 adopts a parallel coiled-coil architecture that is unprecedented for a natural DNA mimic protein. In contrast, binding of Abc2 does not substantially affect the biochemical activities of isolated RecBCD. The RecBCD-Abc2 structure shows that Abc2 binds to the Chi-recognition domains of the RecC subunit in a position that might enable it to mediate the loading of phage recombinases onto its single-stranded DNA products.

Data availability

Source data files have been provided for gel-based analyses (Figure 1 - Source data 1).All new cryoEM data/models generated in this work have been deposited at the EMDB and PDB (see Table 1 for accession codes).Validation reports have been provided for structural models with submission.

Article and author information

Author details

  1. Martin Wilkinson

    Department of Infectious Disease, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5490-613X
  2. Oliver J Wilkinson

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4107-6434
  3. Connie Feyerherm

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Emma E Fletcher

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Dale B Wigley

    Department of Infectious Disease, Imperial College London, London, United Kingdom
    For correspondence
    d.wigley@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0786-6726
  6. Mark Simon Dillingham

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    mark.dillingham@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4612-7141

Funding

Wellcome Trust (100401/Z/12/Z)

  • Mark Simon Dillingham

Biotechnology and Biological Sciences Research Council (BB/S007261/1)

  • Mark Simon Dillingham

Cancer Research UK (C6913/A2160)

  • Dale B Wigley

Wellcome Trust (209327/Z/17/Z)

  • Dale B Wigley

Medical Research Council (MR/N009258/1)

  • Dale B Wigley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wilkinson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,518
    views
  • 315
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Wilkinson
  2. Oliver J Wilkinson
  3. Connie Feyerherm
  4. Emma E Fletcher
  5. Dale B Wigley
  6. Mark Simon Dillingham
(2022)
Structures of RecBCD in complex with phage-encoded inhibitor proteins reveal distinctive strategies for evasion of a bacterial immunity hub
eLife 11:e83409.
https://doi.org/10.7554/eLife.83409

Share this article

https://doi.org/10.7554/eLife.83409

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.