Quantitative trait and transcriptome analysis of genetic complexity underpinning cardiac interatrial septation in mice using an advanced intercross line

Abstract

Unlike single-gene mutations leading to Mendelian conditions, common human diseases are likely to be emergent phenomena arising from multilayer, multiscale and highly interconnected interactions. Atrial and ventricular septal defects are the most common forms of cardiac congenital anomalies in humans. Atrial septal defects (ASD) show an open communication between left and right atria postnatally, potentially resulting in serious hemodynamic consequences if untreated. A milder form of atrial septal defect, patent foramen ovale (PFO), exists in about one quarter of the human population, strongly associated with ischaemic stroke and migraine. The anatomic liabilities and genetic and molecular basis of atrial septal defects remain unclear. Here, we advance our previous analysis of atrial septal variation through quantitative trait locus (QTL) mapping of an advanced intercross line (AIL) established between the inbred QSi5 and 129T2/SvEms mouse strains, that show extremes of septal phenotypes. Analysis resolved 37 unique septal QTL with high overlap between QTL for distinct septal traits and PFO as a binary trait. Whole genome sequencing of parental strains and filtering identified predicted functional variants, including in known human congenital heart disease genes. Transcriptome analysis of developing septa revealed downregulation of networks involving ribosome, nucleosome, mitochondrial and extracellular matrix biosynthesis in the 129T2/SvEms strain, potentially reflecting an essential role for growth and cellular maturation in septal development. Analysis of variant architecture across different gene features, including enhancers and promoters, provided evidence for involvement of non-coding as well as protein coding variants. Our study provides the first high resolution picture of genetic complexity and network liability underlying common congenital heart disease, with relevance to human ASD and PFO.

Data availability

Sequencing data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession codes E-MTAB-11161 (DNA-seq) and E-MTAB-10929 (RNA-seq).

The following data sets were generated

Article and author information

Author details

  1. Mahdi Moradi Marjaneh

    Department of Infectious Disease, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9412-9029
  2. Edwin P Kirk

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ralph Patrick

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0956-1026
  4. Dimuthu Alankerage

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. David T. Humphreys

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4140-0089
  6. Gonzalo Del Monte-Nieto

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Paola Cornejo-Paramo

    Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Vaibhao Janbandhu

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Tram B Doan

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Sally L Dunwoodie

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2069-7349
  11. Emily S Wong

    Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0315-2942
  12. Chris Moran

    Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4550-5101
  13. Ian CA Martin

    Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Peter C Thomson

    Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4428-444X
  15. Richard P Harvey

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    For correspondence
    r.harvey@victorchang.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9950-9792

Funding

National Health and Medical Research Council (0573705)

  • Richard P Harvey

New South Wales Government

  • Richard P Harvey

University of New South Wales (ID3263695)

  • Mahdi Moradi Marjaneh

University of New South Wales

  • Paola Cornejo-Paramo

National Health and Medical Research Council (1118576)

  • Richard P Harvey

National Health and Medical Research Council (2008743)

  • Richard P Harvey

National Institute of Heart Lung and Blood (1RO1HL68885-01)

  • Richard P Harvey

National Heart Foundation of Australia (G06S2575)

  • Richard P Harvey

National Heart Foundation of Australia (G0050738)

  • Richard P Harvey

National Health and Medical Research Council (354400)

  • Richard P Harvey

National Health and Medical Research Council (0573732)

  • Richard P Harvey

National Health and Medical Research Council (1074386)

  • Richard P Harvey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were bred and housed under Animal Care and Research Ethics approvals N00/4-2003/1/3745, N00/4-2003/2/3745 and N00/4-2003/3/3745 from the University of Sydney.

Copyright

© 2023, Moradi Marjaneh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mahdi Moradi Marjaneh
  2. Edwin P Kirk
  3. Ralph Patrick
  4. Dimuthu Alankerage
  5. David T. Humphreys
  6. Gonzalo Del Monte-Nieto
  7. Paola Cornejo-Paramo
  8. Vaibhao Janbandhu
  9. Tram B Doan
  10. Sally L Dunwoodie
  11. Emily S Wong
  12. Chris Moran
  13. Ian CA Martin
  14. Peter C Thomson
  15. Richard P Harvey
(2023)
Quantitative trait and transcriptome analysis of genetic complexity underpinning cardiac interatrial septation in mice using an advanced intercross line
eLife 12:e83606.
https://doi.org/10.7554/eLife.83606

Share this article

https://doi.org/10.7554/eLife.83606

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.