Development and evaluation of a live birth prediction model for evaluating human blastocysts: a retrospective study

  1. Hang Liu
  2. Zhuoran Zhang
  3. Yifan Gu
  4. Changsheng Dai
  5. Guanqiao Shan
  6. Haocong Song
  7. Daniel Li
  8. Wenyuan Chen
  9. Ge Lin  Is a corresponding author
  10. Yu Sun  Is a corresponding author
  1. University of Toronto, Canada
  2. Chinese University of Hong Kong, Shenzhen, China
  3. Central South University, China

Abstract

Background: In infertility treatment, blastocyst morphological grading is commonly used in clinical practice for blastocyst evaluation and selection, but has shown limited predictive power on live birth outcomes of blastocysts. To improve live birth prediction, a number of artificial intelligence (AI) models have been established. Most existing AI models for blastocyst evaluation only used images for live birth prediction, and the area under the receiver operating characteristic (ROC) curve (AUC) achieved by these models has plateaued at ~0.65.

Methods: This study proposed a multi-modal blastocyst evaluation method using both blastocyst images and patient couple's clinical features (e.g., maternal age, hormone profiles, endometrium thickness, and semen quality) to predict live birth outcomes of human blastocysts. To utilize the multi-modal data, we developed a new AI model consisting of a convolutional neural network (CNN) to process blastocyst images and a multi-layer perceptron to process patient couple's clinical features. The dataset used in this study consists of 17,580 blastocysts with known live birth outcomes, blastocyst images, and patient couple's clinical features.

Results: This study achieved an AUC of 0.77 for live birth prediction, which significantly outperforms related works in the literature. Sixteen out of 103 clinical features were identified to be predictors of live birth outcomes and helped improve live birth prediction. Among these features, maternal age, the day of blastocyst transfer, antral follicle count, retrieved oocyte number, and endometrium thickness measured before transfer are the top five features contributing to live birth prediction. Heatmaps showed that the CNN in the AI model mainly focuses on image regions of inner cell mass and trophectoderm (TE) for live birth prediction, and the contribution of TE-related features was greater in the CNN trained with the inclusion of patient couple's clinical features compared with the CNN trained with blastocyst images alone.

Conclusions: The results suggest that the inclusion of patient couple's clinical features along with blastocyst images increases live birth prediction accuracy.

Funding: Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program.

Data availability

All processed data and code needed to reproduce the findings of the study are made openly available in deidentified form. This can be found in https://github.com/robotVisionHang/LiveBirthPrediction_Data_Code, and attached to this manuscript. All codes and software used to analyze the data can also be accessed through the link. Due to data privacy regulations of patient data, raw data cannot be publicly shared. Interested researchers are welcome to contact the corresponding author with a concise project proposal indicating aims of using the data and how they will use the data. The project proposal will be firstly assessed by Prof. Yu Sun, Prof. Ge Lin, and then by the Ethics Committee of the Reproductive and Genetic Hospital of CITIC-Xiangya. There are no restrictions on who can access the data.

Article and author information

Author details

  1. Hang Liu

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7948-4236
  2. Zhuoran Zhang

    School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yifan Gu

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Changsheng Dai

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Guanqiao Shan

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Haocong Song

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Li

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Wenyuan Chen

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Ge Lin

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    For correspondence
    linggf@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Yu Sun

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    For correspondence
    sun@mie.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7895-0741

Funding

Natural Sciences and Engineering Research Council of Canada

  • Yu Sun

Canada Research Chairs

  • Yu Sun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was not necessary because this study used retrospective and fully de-identified data, no medical intervention was performed on the subject, and no biological samples from the patient were collected. This study was approved by the Ethics Committee of the Reproductive and Genetic Hospital of CITIC-Xiangya (approval number: LL-SC-2021-008).

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,625
    views
  • 277
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hang Liu
  2. Zhuoran Zhang
  3. Yifan Gu
  4. Changsheng Dai
  5. Guanqiao Shan
  6. Haocong Song
  7. Daniel Li
  8. Wenyuan Chen
  9. Ge Lin
  10. Yu Sun
(2023)
Development and evaluation of a live birth prediction model for evaluating human blastocysts: a retrospective study
eLife 12:e83662.
https://doi.org/10.7554/eLife.83662

Share this article

https://doi.org/10.7554/eLife.83662

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.