Development and evaluation of a live birth prediction model for evaluating human blastocysts: a retrospective study

  1. Hang Liu
  2. Zhuoran Zhang
  3. Yifan Gu
  4. Changsheng Dai
  5. Guanqiao Shan
  6. Haocong Song
  7. Daniel Li
  8. Wenyuan Chen
  9. Ge Lin  Is a corresponding author
  10. Yu Sun  Is a corresponding author
  1. University of Toronto, Canada
  2. Chinese University of Hong Kong, Shenzhen, China
  3. Central South University, China

Abstract

Background: In infertility treatment, blastocyst morphological grading is commonly used in clinical practice for blastocyst evaluation and selection, but has shown limited predictive power on live birth outcomes of blastocysts. To improve live birth prediction, a number of artificial intelligence (AI) models have been established. Most existing AI models for blastocyst evaluation only used images for live birth prediction, and the area under the receiver operating characteristic (ROC) curve (AUC) achieved by these models has plateaued at ~0.65.

Methods: This study proposed a multi-modal blastocyst evaluation method using both blastocyst images and patient couple's clinical features (e.g., maternal age, hormone profiles, endometrium thickness, and semen quality) to predict live birth outcomes of human blastocysts. To utilize the multi-modal data, we developed a new AI model consisting of a convolutional neural network (CNN) to process blastocyst images and a multi-layer perceptron to process patient couple's clinical features. The dataset used in this study consists of 17,580 blastocysts with known live birth outcomes, blastocyst images, and patient couple's clinical features.

Results: This study achieved an AUC of 0.77 for live birth prediction, which significantly outperforms related works in the literature. Sixteen out of 103 clinical features were identified to be predictors of live birth outcomes and helped improve live birth prediction. Among these features, maternal age, the day of blastocyst transfer, antral follicle count, retrieved oocyte number, and endometrium thickness measured before transfer are the top five features contributing to live birth prediction. Heatmaps showed that the CNN in the AI model mainly focuses on image regions of inner cell mass and trophectoderm (TE) for live birth prediction, and the contribution of TE-related features was greater in the CNN trained with the inclusion of patient couple's clinical features compared with the CNN trained with blastocyst images alone.

Conclusions: The results suggest that the inclusion of patient couple's clinical features along with blastocyst images increases live birth prediction accuracy.

Funding: Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program.

Data availability

All processed data and code needed to reproduce the findings of the study are made openly available in deidentified form. This can be found in https://github.com/robotVisionHang/LiveBirthPrediction_Data_Code, and attached to this manuscript. All codes and software used to analyze the data can also be accessed through the link. Due to data privacy regulations of patient data, raw data cannot be publicly shared. Interested researchers are welcome to contact the corresponding author with a concise project proposal indicating aims of using the data and how they will use the data. The project proposal will be firstly assessed by Prof. Yu Sun, Prof. Ge Lin, and then by the Ethics Committee of the Reproductive and Genetic Hospital of CITIC-Xiangya. There are no restrictions on who can access the data.

Article and author information

Author details

  1. Hang Liu

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7948-4236
  2. Zhuoran Zhang

    School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yifan Gu

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Changsheng Dai

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Guanqiao Shan

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Haocong Song

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Li

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Wenyuan Chen

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Ge Lin

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    For correspondence
    linggf@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Yu Sun

    Department of Mechanical Engineering, University of Toronto, Toronto, Canada
    For correspondence
    sun@mie.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7895-0741

Funding

Natural Sciences and Engineering Research Council of Canada

  • Yu Sun

Canada Research Chairs

  • Yu Sun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was not necessary because this study used retrospective and fully de-identified data, no medical intervention was performed on the subject, and no biological samples from the patient were collected. This study was approved by the Ethics Committee of the Reproductive and Genetic Hospital of CITIC-Xiangya (approval number: LL-SC-2021-008).

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,807
    views
  • 311
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hang Liu
  2. Zhuoran Zhang
  3. Yifan Gu
  4. Changsheng Dai
  5. Guanqiao Shan
  6. Haocong Song
  7. Daniel Li
  8. Wenyuan Chen
  9. Ge Lin
  10. Yu Sun
(2023)
Development and evaluation of a live birth prediction model for evaluating human blastocysts: a retrospective study
eLife 12:e83662.
https://doi.org/10.7554/eLife.83662

Share this article

https://doi.org/10.7554/eLife.83662

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.