Abstract

Co-regulated genes of the Imprinted Gene Network are involved in the control of growth and body size, and imprinted gene dysfunction underlies human paediatric disorders involving the endocrine system. Imprinted genes are highly expressed in the pituitary gland, among them, Dlk1, a paternally expressed gene whose membrane-bound and secreted protein products can regulate proliferation and differentiation of multiple stem cell populations. Dosage of circulating DLK1 has been previously implicated in the control of growth through unknown molecular mechanisms. Here we generate a series of mouse genetic models to modify levels of Dlk1 expression in the pituitary gland and demonstrate that the dosage of DLK1 modulates the process of stem cell commitment with lifelong impact on pituitary gland size. We establish that stem cells are a critical source of DLK1, where embryonic disruption alters proliferation in the anterior pituitary, leading to long-lasting consequences on growth hormone secretion later in life.

Data availability

Sequencing data have previously been deposited in GEO under accession codes GSE120410, GSE142074, GSE178454.Figure 1 - Source Data 1, Figure 4 - Source Data 1, Figure 5&6 - Source Data 1 contain the numerical data used to generate the figures.

The following previously published data sets were used

Article and author information

Author details

  1. Valeria Scagliotti

    Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Lillina Vignola

    Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7121-7715
  3. Thea L Willis

    Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1794-7490
  4. Mark Howard

    Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Eugenia Marinelli

    Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Carles Gaston-Massuet

    Centre for Endocrinology, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Cynthia Lilian Andoniadou

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4311-5855
  8. Marika Charalambous

    Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
    For correspondence
    marika.charalambous@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1684-5783

Funding

Medical Research Council (MR/L002345/1)

  • Mark Howard
  • Marika Charalambous

Barts Charity (MGU0551)

  • Carles Gaston-Massuet

Medical Research Council (MR/R022836/1)

  • Valeria Scagliotti
  • Eugenia Marinelli
  • Marika Charalambous

Medical Research Council (MR/T012153/1)

  • Cynthia Lilian Andoniadou

Merck Healthcare KGaA (GGI 2020)

  • Valeria Scagliotti
  • Maria Lillina Vignola
  • Marika Charalambous

Society for Endocrinology (ECR Grant)

  • Mark Howard

Guy's and St Thomas' NHS Foundation Trust (BRC-NIHR PhD studentship)

  • Maria Lillina Vignola

King's College London (Cell Therapies and Regenerative Medicine" Four-Year Welcome Trust PhD Training Program")

  • Thea L Willis

Action Medical Research (GN2272)

  • Carles Gaston-Massuet

Barts Charity (GN 417/2238)

  • Carles Gaston-Massuet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Scagliotti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 656
    views
  • 95
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valeria Scagliotti
  2. Maria Lillina Vignola
  3. Thea L Willis
  4. Mark Howard
  5. Eugenia Marinelli
  6. Carles Gaston-Massuet
  7. Cynthia Lilian Andoniadou
  8. Marika Charalambous
(2023)
Imprinted Dlk1 dosage as a size determinant of the mammalian pituitary gland
eLife 12:e84092.
https://doi.org/10.7554/eLife.84092

Share this article

https://doi.org/10.7554/eLife.84092

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.