Peptides that Mimic RS repeats modulate phase separation of SRSF1, revealing a reliance on combined stacking and electrostatic interactions

Abstract

Phase separation plays crucial roles in both sustaining cellular function and perpetuating disease states. Despite extensive studies, our understanding of this process is hindered by low solubility of phase-separating proteins. One example of this is found in SR and SR-related proteins. These proteins are characterized by domains rich in arginine and serine (RS domains), which are essential to alternative splicing and in vivo phase separation. However, they are also responsible for a low solubility that has made these proteins difficult to study for decades. Here, we solubilize the founding member of the SR family, SRSF1, by introducing a peptide mimicking RS repeats as a co-solute. We find that this RS-mimic peptide forms interactions similar to those of the protein's RS domain. Both interact with a combination of surface-exposed aromatic residues and acidic residues on SRSF1's RNA Recognition Motifs (RRMs) through electrostatic and cation-pi interactions. Analysis of RRM domains from human SR proteins indicates that these sites are conserved across the protein family. In addition to opening an avenue to previously unavailable proteins, our work provides insight into how SR proteins phase separate and participate in nuclear speckles.

Data availability

NMR assignment has been deposited to BMRB (ID: 51299).

The following data sets were generated

Article and author information

Author details

  1. Talia Fargason

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6888-0356
  2. Naiduwadura Ivon Upekala De Silva

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Erin Powell

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zihan Zhang

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Trenton Paul

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jamal Shariq

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Steve Zaharias

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jun Zhang

    Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    zhanguab@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5842-7424

Funding

National Science Foundation (MCB2024964)

  • Jun Zhang

National Institutes of Health (R35GM147091)

  • Jun Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Fargason et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,718
    views
  • 249
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Talia Fargason
  2. Naiduwadura Ivon Upekala De Silva
  3. Erin Powell
  4. Zihan Zhang
  5. Trenton Paul
  6. Jamal Shariq
  7. Steve Zaharias
  8. Jun Zhang
(2023)
Peptides that Mimic RS repeats modulate phase separation of SRSF1, revealing a reliance on combined stacking and electrostatic interactions
eLife 12:e84412.
https://doi.org/10.7554/eLife.84412

Share this article

https://doi.org/10.7554/eLife.84412

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.