CD31 signaling promotes the detachment at the uropod of extravasating neutrophils allowing their migration to sites of inflammation
Abstract
Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer and move towards the extravascular, static environment. Those events are tightly orchestrated by integrins but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that Platelet-Endothelial Cell Adhesion Molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed β2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-5.
Article and author information
Author details
Funding
MSDAVENIR (SAVE-Brain)
- Antonino Nicoletti
Agence Nationale de la Recherche (10-LABX-0017 Inflamex"")
- Marc Clément
Agence Nationale de la Recherche (DS0404-16-RHUS-00010 iVASC"")
- Giuseppina Caligiuri
Engineering and Physical Sciences Research Council (grant EP/L014165/1)
- Pasquale Maffia
British Heart Foundation (PG/19/84/34771)
- Pasquale Maffia
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All the investigations were conformed to the directive 2010/63/EU of the European Parliament and formal approval was granted by the local Animal Ethics Committee (Comité d'étique Bichat-Debré, Paris, France).
Copyright
© 2023, Andreata et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,071
- views
-
- 126
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Developmental Biology
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.
-
- Cell Biology
- Developmental Biology
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.