Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance

  1. Rebecca EK Mandt  Is a corresponding author
  2. Madeline R Luth
  3. Mark A Tye
  4. Ralph Mazitschek
  5. Sabine Ottilie
  6. Elizabeth A Winzeler
  7. Maria Jose Lafuente-Monasterio
  8. Francisco Javier Gamo
  9. Dyann F Wirth
  10. Amanda K Lukens  Is a corresponding author
  1. Harvard T H Chan School of Public Health, United States
  2. University of California, San Diego, United States
  3. Massachusetts General Hospital, United States
  4. GlaxoSmithKline, Spain
  5. Broad Institute, United States

Abstract

Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.

Data availability

The raw whole-genome sequencing data generated in this study have been submitted to the NCBI Sequence Read Archive database (https://www.ncbi.nlm.nih.gov/sra/) under accession number PRJNA689594. Sanger sequencing of the PCR amplified dhodh locus have been submitted to GenBank (NCBI) under accession numbers MZ571149-MZ571158.

The following data sets were generated

Article and author information

Author details

  1. Rebecca EK Mandt

    Harvard T H Chan School of Public Health, Boston, United States
    For correspondence
    rebeccamandt@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7165-7876
  2. Madeline R Luth

    University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Mark A Tye

    Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Ralph Mazitschek

    Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Sabine Ottilie

    University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Elizabeth A Winzeler

    University of California, San Diego, San Diego, United States
    Competing interests
    Elizabeth A Winzeler, Sits on the advisory board of the Tres Cantos Open Lab Foundation.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4049-2113
  7. Maria Jose Lafuente-Monasterio

    GlaxoSmithKline, Tres Cantos, Spain
    Competing interests
    Maria Jose Lafuente-Monasterio, GlaxoSmithKline employee.
  8. Francisco Javier Gamo

    GlaxoSmithKline, Tres Cantos, Spain
    Competing interests
    Francisco Javier Gamo, GlaxoSmithKline employee.
  9. Dyann F Wirth

    Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    Dyann F Wirth, Sits on the advisory board of Medicines for Malaria Venture.
  10. Amanda K Lukens

    Broad Institute, Cambridge, United States
    For correspondence
    alukens@broadinstitute.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9560-7643

Funding

National Institutes of Health (R01 AI093716)

  • Rebecca EK Mandt
  • Dyann F Wirth
  • Amanda K Lukens

Bill and Melinda Gates Foundation (OPP1132451)

  • Rebecca EK Mandt
  • Maria Jose Lafuente-Monasterio
  • Francisco Javier Gamo
  • Dyann F Wirth
  • Amanda K Lukens

National Institutes of Health (T32 GM008666)

  • Madeline R Luth

ExxonMobil Foundation

  • Rebecca EK Mandt
  • Dyann F Wirth
  • Amanda K Lukens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Mandt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca EK Mandt
  2. Madeline R Luth
  3. Mark A Tye
  4. Ralph Mazitschek
  5. Sabine Ottilie
  6. Elizabeth A Winzeler
  7. Maria Jose Lafuente-Monasterio
  8. Francisco Javier Gamo
  9. Dyann F Wirth
  10. Amanda K Lukens
(2023)
Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance
eLife 12:e85023.
https://doi.org/10.7554/eLife.85023

Share this article

https://doi.org/10.7554/eLife.85023

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.