Dalpiciclib partially abrogates ER signaling activation induced by pyrotinib in HER2+HR+ breast cancer

  1. Jiawen Bu
  2. Yixiao Zhang
  3. Nan Niu
  4. Kewei Bi
  5. Lisha Sun
  6. Xinbo Qiao
  7. Yimin Wang
  8. Yinan Zhang
  9. Xiaofan Jiang
  10. Dan Wang
  11. Qingtian Ma
  12. Huajun Li
  13. Caigang Liu  Is a corresponding author
  1. Shengjing Hospital of China Medical Universit, China
  2. Shengjing Hospital of China Medical University, China
  3. Jiangsu Hengrui Pharmaceuticals Co Ltd, China

Abstract

Recent evidences from clinical trials (NCT04486911) revealed that the combination of pyrotinib, letrozole and dalpiciclib exerted optimistic therapeutic effect in treating HER2+HR+ breast cancer, however, the underlying molecular mechanism remained elusive. Through the drug sensitivity test, the drug combination efficacy of pyrotinib, tamoxifen and dalpiciclib to BT474 cells were tested. The underlying molecular mechanisms were investigated using immunofluorescence, Western blot analysis, immunohistochemical staining and cell cycle analysis. Potential risk factor which may indicate the responsiveness to drug treatment in HER2+/HR+ breast cancer was identified using RNA-sequence and evaluated using immunohistochemical staining and in vivo drug susceptibility test. We found that pyrotinib combined with dalpiciclib exerted better cytotoxic efficacy than pyrotinib combined with tamoxifen in BT474 cells. Degradation of HER2 could enhance ER nuclear transportation, activating ER signaling pathway in BT474 cells whereas dalpiciclib could partially abrogate this process. This may be the underlying mechanism by which combination of pyrotinib, tamoxifen and dalpiciclib exerted best cytotoxic effect. Furthermore, CALML5 was revealed to be a risk factor in the treatment of HER2+/HR+ breast cancer and the usage of dalpiciclib might overcome the drug resistance to pyrotinib + tamoxifen due to CALML5 expression. Our study provided evidence that the usage of dalpiciclib in the treatment of HER2+/HR+ breast cancer could partially abrogate the estrogen signaling pathway activation caused by anti-HER2 therapy and revealed that CALML5 could serve as a risk factor in the treatment of HER2+/HR+ breast cancer.

Data availability

Sequencing data have been deposited in GSA database (https://ngdc.cncb.ac.cn/) under accession link: https://ngdc.cncb.ac.cn/omix/view/OMIX002504All data generated or analysed during the study are included in the manuscript and figure supplements.Source data files have been provided for Figure 1-Figure 4 as well as all the Figure supplements.Raw gel data for Figure 4 and Figure 2-figure supplement 1 was uploaded as source data files corresponding to the figures.

The following data sets were generated

Article and author information

Author details

  1. Jiawen Bu

    Department of Oncology, Shengjing Hospital of China Medical Universit, Shenyang, China
    Competing interests
    No competing interests declared.
  2. Yixiao Zhang

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  3. Nan Niu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  4. Kewei Bi

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  5. Lisha Sun

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4095-5026
  6. Xinbo Qiao

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6759-921X
  7. Yimin Wang

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  8. Yinan Zhang

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  9. Xiaofan Jiang

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  10. Dan Wang

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  11. Qingtian Ma

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  12. Huajun Li

    Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co Ltd, Shanghai, China
    Competing interests
    Huajun Li, is affiliated with Jiangsu Hengrui Pharmaceuticals Co. Ltd and the author has no other competing interests to declare..
  13. Caigang Liu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    For correspondence
    angel-s205@163.com
    Competing interests
    Caigang Liu, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2083-235X

Funding

National Natural Science Foundation of China (U20A20381)

  • Caigang Liu

National Natural Science Foundation of China (81872159)

  • Caigang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal study was approved by the Ethics Committee of Shengjing Hospital of China Medical University (Permit Number: 2020PS318K). The pdf permission document have been uploaded as a Supporting Zip Document.

Copyright

© 2023, Bu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 670
    views
  • 189
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiawen Bu
  2. Yixiao Zhang
  3. Nan Niu
  4. Kewei Bi
  5. Lisha Sun
  6. Xinbo Qiao
  7. Yimin Wang
  8. Yinan Zhang
  9. Xiaofan Jiang
  10. Dan Wang
  11. Qingtian Ma
  12. Huajun Li
  13. Caigang Liu
(2023)
Dalpiciclib partially abrogates ER signaling activation induced by pyrotinib in HER2+HR+ breast cancer
eLife 12:e85246.
https://doi.org/10.7554/eLife.85246

Share this article

https://doi.org/10.7554/eLife.85246

Further reading

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.