Abstract

Sirtuins (SIRT) exhibit deacetylation or ADP-ribosyltransferase activity and regulate a wide range of cellular processes in the nucleus, mitochondria and cytoplasm. The role of the only sirtuin that resides in the cytoplasm, SIRT2, in the development of ischemic injury and cardiac hypertrophy is not known. In this paper, we show that the hearts of mice with deletion of Sirt2 (Sirt2-/-) display improved cardiac function after ischemia-reperfusion (I/R) and pressure overload (PO), suggesting that SIRT2 exerts maladaptive effects in the heart in response to stress. Similar results were obtained in mice with cardiomyocyte-specific Sirt2 deletion. Mechanistic studies suggest that SIRT2 modulates cellular levels and activity of nuclear factor (erythroid-derived 2)-like 2 (NRF2), which results in reduced expression of antioxidant proteins. Deletion of Nrf2 in the hearts of Sirt2-/- mice reversed protection after PO. Finally, treatment of mouse hearts with a specific SIRT2 inhibitor reduced cardiac size and attenuates cardiac hypertrophy in response to PO. These data indicate that SIRT2 has detrimental effects in the heart and plays a role in cardiac response to injury and the progression of cardiac hypertrophy, which makes this protein a unique member of the SIRT family. Additionally, our studies provide a novel approach for treatment of cardiac hypertrophy and injury by targeting SIRT2 pharmacologically, providing a novel avenue for the treatment of these disorders.

Data availability

Source Data files are provided.

Article and author information

Author details

  1. Xiaoyan Yang

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  2. Hsiang-Chun Chang

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Yuki Tatekoshi

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Amir Mahmoodzadeh

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Maryam Balibegloo

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Zeinab Najafi

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  7. Rongxue Wu

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  8. Chunlei Chen

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  9. Tatsuya Sato

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7876-1772
  10. Jason Solomon Shapiro

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0880-3142
  11. Hossein Ardehali

    Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
    For correspondence
    h-ardehali@northwestern.edu
    Competing interests
    Hossein Ardehali, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7662-0551

Funding

NIH Office of the Director (NIH R01 HL140973,R01 HL138982,R01 HL140927,R01 HL155953)

  • Hossein Ardehali

Leducq (Cardiooncology Network)

  • Hossein Ardehali

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were maintained and handled in accordance with the Northwestern Animal Care and Use Committee. All animal studies were approved by the Institutional Animal Care and Use Committee at Northwestern University (Chicago, Illinois) and were performed in accordance with guidelines from the National Institutes of Health. The approval number of the animal protocol currently associated with this activity is IS00006808.

Copyright

© 2023, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,055
    views
  • 198
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoyan Yang
  2. Hsiang-Chun Chang
  3. Yuki Tatekoshi
  4. Amir Mahmoodzadeh
  5. Maryam Balibegloo
  6. Zeinab Najafi
  7. Rongxue Wu
  8. Chunlei Chen
  9. Tatsuya Sato
  10. Jason Solomon Shapiro
  11. Hossein Ardehali
(2023)
SIRT2 inhibition protects against cardiac hypertrophy and ischemic injury
eLife 12:e85571.
https://doi.org/10.7554/eLife.85571

Share this article

https://doi.org/10.7554/eLife.85571

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.