Core PCP mutations affect short time mechanical properties but not tissue morphogenesis in the Drosophila pupal wing

  1. Romina Piscitello-Gómez
  2. Franz S Gruber
  3. Abhijeet Krishna
  4. Charlie Duclut
  5. Carl D Modes
  6. Marko Popović
  7. Frank Jülicher
  8. Natalie A Dye  Is a corresponding author
  9. Suzanne Eaton
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. University of Dundee, United Kingdom
  3. Laboratoire Physico-Chimie Curie, Institut Curie, France
  4. Center for Systems Biology Dresden, Germany
  5. Max Planck Institute for the Physics of Complex Systems, Germany
  6. Technische Universität Dresden, Germany

Abstract

How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of Drosophila melanogaster, an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during Drosophila pupal wing morphogenesis do not require core PCP as an orientational guiding cue.

Data availability

Source data and code are provided for each figure

Article and author information

Author details

  1. Romina Piscitello-Gómez

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Franz S Gruber

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2008-8460
  3. Abhijeet Krishna

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9291-500X
  4. Charlie Duclut

    Laboratoire Physico-Chimie Curie, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8595-6815
  5. Carl D Modes

    Center for Systems Biology Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marko Popović

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  8. Natalie A Dye

    DFG Excellence Cluster Physics of Life, Technische Universität Dresden, Dresden, Germany
    For correspondence
    natalie_anne.dye@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4859-6670
  9. Suzanne Eaton

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max Planck Society

  • Romina Piscitello-Gómez
  • Franz S Gruber
  • Abhijeet Krishna
  • Charlie Duclut
  • Carl D Modes
  • Marko Popović
  • Frank Jülicher
  • Natalie A Dye
  • Suzanne Eaton

Deutsche Forschungsgemeinschaft (EXC-2068-390729961)

  • Romina Piscitello-Gómez
  • Abhijeet Krishna
  • Carl D Modes
  • Frank Jülicher
  • Natalie A Dye
  • Suzanne Eaton

Deutsche Forschungsgemeinschaft (SPP1782)

  • Romina Piscitello-Gómez
  • Franz S Gruber
  • Natalie A Dye
  • Suzanne Eaton

Deutsche Krebshilfe (MSNZ-P2 Dresden)

  • Natalie A Dye

Austrian Academy of Sciences (DOC Fellowship)

  • Franz S Gruber

Agence Nationale de la Recherche (ANR-11-LABX-0071)

  • Charlie Duclut

Agence Nationale de la Recherche (ANR-18-IDEX-0001)

  • Charlie Duclut

Deutsche Forschungsgemeinschaft (EA4/10-1,EA4/10-2)

  • Romina Piscitello-Gómez
  • Franz S Gruber
  • Natalie A Dye
  • Suzanne Eaton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Piscitello-Gómez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 676
    views
  • 165
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romina Piscitello-Gómez
  2. Franz S Gruber
  3. Abhijeet Krishna
  4. Charlie Duclut
  5. Carl D Modes
  6. Marko Popović
  7. Frank Jülicher
  8. Natalie A Dye
  9. Suzanne Eaton
(2023)
Core PCP mutations affect short time mechanical properties but not tissue morphogenesis in the Drosophila pupal wing
eLife 12:e85581.
https://doi.org/10.7554/eLife.85581

Share this article

https://doi.org/10.7554/eLife.85581

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Thi Thom Mac, Teddy Fauquier ... Thierry Brue
    Research Article

    Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.