Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for Drosophila research

  1. Nikki Coleman-Gosser
  2. Yanhui Hu
  3. Shiva Raghuvanshi
  4. Shane Stitzinger
  5. Weihang Chen
  6. Arthur Luhur
  7. Daniel Mariyappa
  8. Molly Josifov
  9. Andrew Zelhof
  10. Stephanie E Mohr
  11. Norbert Perrimon  Is a corresponding author
  12. Amanda Simcox  Is a corresponding author
  1. The Ohio State University, United States
  2. Harvard Medical School, United States
  3. Indiana University, United States
  4. Harvard Medical School, Howard Hughes Medical Institute, United States

Abstract

Expression of activated Ras, RasV12, provides Drosophila cultured cells with a proliferation and survival advantage that simplifies the generation of continuous cell lines. Here we used lineage restricted RasV12 expression to generate continuous cell lines of muscle, glial, and epithelial cell type. Additionally, cell lines with neuronal and hemocyte characteristics were isolated by cloning from cell cultures established with broad RasV12 expression. Differentiation with the hormone ecdysone caused maturation of cells from mesoderm lines into active muscle tissue and enhanced dendritic features in neuronal-like lines. Transcriptome analysis showed expression of key cell-type specific genes and the expected alignment with single cell sequencing and in situ data. Overall, the technique has produced in vitro cell models with characteristics of glia, epithelium, muscle, nerve, and hemocyte. The cells and associated data are available from the Drosophila Genomic Resource Center.

Data availability

Sequencing data have been deposited in GEO under accession code GSE219105.

The following data sets were generated

Article and author information

Author details

  1. Nikki Coleman-Gosser

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yanhui Hu

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiva Raghuvanshi

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shane Stitzinger

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Weihang Chen

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Arthur Luhur

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Mariyappa

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4775-1656
  8. Molly Josifov

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2899-7186
  9. Andrew Zelhof

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephanie E Mohr

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9639-7708
  11. Norbert Perrimon

    Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
    For correspondence
    perrimon@genetics.med.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7542-472X
  12. Amanda Simcox

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    For correspondence
    simcox.1@osu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5572-7042

Funding

National Institutes of Health Office of the Director (R24 OD019847)

  • Stephanie E Mohr
  • Norbert Perrimon
  • Amanda Simcox

National Institutes of Health (P40OD010949)

  • Andrew Zelhof

National Institutes of Health (P41 GM132087)

  • Andrew Zelhof

National Science Foundation (IOS 1419535)

  • Amanda Simcox

Howard Hughes Medical Institute

  • Norbert Perrimon

Women & Philanthropy at the Ohio State University (Grant)

  • Amanda Simcox

National Science Foundation (Support while serving at the National Science Foundation)

  • Amanda Simcox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,222
    views
  • 376
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikki Coleman-Gosser
  2. Yanhui Hu
  3. Shiva Raghuvanshi
  4. Shane Stitzinger
  5. Weihang Chen
  6. Arthur Luhur
  7. Daniel Mariyappa
  8. Molly Josifov
  9. Andrew Zelhof
  10. Stephanie E Mohr
  11. Norbert Perrimon
  12. Amanda Simcox
(2023)
Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for Drosophila research
eLife 12:e85814.
https://doi.org/10.7554/eLife.85814

Share this article

https://doi.org/10.7554/eLife.85814

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.