Role of cytoneme structures and extracellular vesicles in Trichomonas vaginalis parasite: parasite communication

  1. Nehuén Salas
  2. Manuela Blasco Pedreros
  3. Tuanne dos Santos Melo
  4. Vanina G Maguire
  5. Jihui Sha
  6. James A Wohlschlegel
  7. Antonio Pereira-Neves
  8. Natalia de Miguel  Is a corresponding author
  1. Instituto Tecnológico de Chascomús, Argentina
  2. Instituto Aggeu Magalhães, Brazil
  3. Estación Experimental Agropecuaria, Argentina
  4. University of California, Los Angeles, United States

Abstract

Trichomonas vaginalis, the etiologic agent of the most common non-viral sexually transmitted infection worldwide, colonizes the human urogenital tract where it remains extracellular and adheres to epithelial cells. With an estimated annual prevalence of 276 million new cases, mixed infections with different parasite strains are expected. Although it is considered as obvious that parasites interact with their host to enhance their own survival and transmission, evidence of mixed infections call into question the extent to which unicellular parasites communicate with each other. Here, we demonstrated that different T. vaginalis strains can communicate through the formation of cytoneme-like membranous cell connections. We showed that T. vaginalis adherent strains form abundant membrane protrusions and cytonemes formation of an adherent parasite strain (CDC1132) is affected in the presence of a different strain (G3 or B7RC2). Using cell culture inserts assays, we demonstrated that the effect in cytoneme formation is contact-independent and that extracellular vesicles (EVs) are responsible, at least in part, of the communication among strains. We found that EVs isolated from G3, B7RC2, and CDC1132 strains contain a highly distinct repertoire of proteins, some of them involved in signaling and communication, among other functions. Finally, we showed that parasite adherence to host cells is affected by this communication between strains as binding of adherent T. vaginalis CDC1132 strain to prostate cells is significantly higher in the presence of G3 or B7RC2 strains. Demonstrating that interaction of isolates with distinct phenotypic characteristics may have significant clinical repercussions, we also observed that a poorly adherent parasite strain (G3) adheres more strongly to prostate cells in the presence of an adherent strain. The study of signaling, sensing, and cell communication in parasitic organisms will surely enhance our understanding of the basic biological characteristics of parasites, which may have important consequences in pathogenesis.

Data availability

All data available in the manuscript

Article and author information

Author details

  1. Nehuén Salas

    Laboratorio de Parásitos Anaerobios, Instituto Tecnológico de Chascomús, Buenos Aires, Argentina
    Competing interests
    No competing interests declared.
  2. Manuela Blasco Pedreros

    Laboratorio de Parásitos Anaerobios, Instituto Tecnológico de Chascomús, Buenos Aires, Argentina
    Competing interests
    No competing interests declared.
  3. Tuanne dos Santos Melo

    Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
    Competing interests
    No competing interests declared.
  4. Vanina G Maguire

    Área de mejoramiento genético vegetal, Estación Experimental Agropecuaria, Cordoba, Argentina
    Competing interests
    No competing interests declared.
  5. Jihui Sha

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. James A Wohlschlegel

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Antonio Pereira-Neves

    Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
    Competing interests
    No competing interests declared.
  8. Natalia de Miguel

    Laboratorio de Parásitos Anaerobios, Instituto Tecnológico de Chascomús, Buenos Aires, Argentina
    For correspondence
    ndemiguel@intech.gov.ar
    Competing interests
    Natalia de Miguel, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3864-0703

Funding

Fondo para la Investigación Científica y Tecnológica (PICT-2019-01671)

  • Natalia de Miguel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Salas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,034
    views
  • 263
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nehuén Salas
  2. Manuela Blasco Pedreros
  3. Tuanne dos Santos Melo
  4. Vanina G Maguire
  5. Jihui Sha
  6. James A Wohlschlegel
  7. Antonio Pereira-Neves
  8. Natalia de Miguel
(2023)
Role of cytoneme structures and extracellular vesicles in Trichomonas vaginalis parasite: parasite communication
eLife 12:e86067.
https://doi.org/10.7554/eLife.86067

Share this article

https://doi.org/10.7554/eLife.86067

Further reading

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article Updated

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Louna Fruchard, Anamaria Babosan ... Zeynep Baharoglu
    Research Article

    Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.