Abstract

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood borne immune cell types (naïve B, naïve CD4+ and CD8+ T cells, granulocytes, monocytes and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In-silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor motifs respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to transcription factor motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.

Data availability

DNA methylation EPIC 850k data are available at GEO under accession number GSE184269

The following previously published data sets were used

Article and author information

Author details

  1. Roshni Roy

    Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Pei-Lun Kuo

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julián Candia

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5793-8989
  4. Dimitra Sarantapoulou

    Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ceereena Ubaida-Mohien

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4301-4758
  6. Dena Hernandez

    Laboratory of Neurogenetics, National Institute on Aging, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mary Kaileh

    Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2314-312X
  8. Sampath Arepalli

    Laboratory of Neurogenetics, National Institute on Aging, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Amit Singh

    Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Arsun Bektas

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jaekwan Kim

    Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ann Z Moore

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Toshiko Tanaka

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4161-3829
  14. Julia McKelvey

    Clinical Research Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Linda Zukley

    Clinical Research Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Cuong Nguyen

    Flow Cytometry Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Tonya Wallace

    Flow Cytometry Unit, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Christopher Dunn

    Flow Cytometry Core, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7899-0110
  19. William Wood

    Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Yulan Piao

    Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Christopher Coletta

    Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Supriyo De

    Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Jyoti Sen

    Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Nan-ping Weng

    Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Ranjan Sen

    Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Luigi Ferrucci

    Translational Gerentology Branch, National Institute on Aging, Baltimore, United States
    For correspondence
    ferruccilu@grc.nia.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6273-1613

Funding

No external funding was received for this work.

Ethics

Human subjects: GESTALT study was approved by the institutional review board of the National Institutes of Health. Informed consent as well as the consent to publish the data collected was obtained from every participant in the study. Since the study of gene expression and epigenetic regulation are essential aims of GESTALT, all participants were required to consent to DNA/RNA testing and storage at all visits in order to participate in the study. the GESTALT IRB approval number is 15-AG-0063.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,491
    views
  • 210
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roshni Roy
  2. Pei-Lun Kuo
  3. Julián Candia
  4. Dimitra Sarantapoulou
  5. Ceereena Ubaida-Mohien
  6. Dena Hernandez
  7. Mary Kaileh
  8. Sampath Arepalli
  9. Amit Singh
  10. Arsun Bektas
  11. Jaekwan Kim
  12. Ann Z Moore
  13. Toshiko Tanaka
  14. Julia McKelvey
  15. Linda Zukley
  16. Cuong Nguyen
  17. Tonya Wallace
  18. Christopher Dunn
  19. William Wood
  20. Yulan Piao
  21. Christopher Coletta
  22. Supriyo De
  23. Jyoti Sen
  24. Nan-ping Weng
  25. Ranjan Sen
  26. Luigi Ferrucci
(2023)
Epigenetic signature of human immune aging in the GESTALT study
eLife 12:e86136.
https://doi.org/10.7554/eLife.86136

Share this article

https://doi.org/10.7554/eLife.86136

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.