An open-source platform for head-fixed operant and consummatory behavior

Abstract

Head-fixed behavioral experiments in rodents permit unparalleled experimental control, precise measurement of behavior, and concurrent modulation and measurement of neural activity. Here we present OHRBETS (Open-Source Head-fixed Rodent Behavioral Experimental Training System; pronounced 'Orbitz'), a low-cost, open-source platform of hardware and software to flexibly pursue the neural basis of a variety of motivated behaviors. Head-fixed mice tested with OHRBETS displayed operant conditioning for caloric reward that replicates core behavioral phenotypes observed during freely moving conditions. OHRBETS also permits optogenetic intracranial self-stimulation under positive or negative operant conditioning procedures and real-time place preference behavior, like that observed in freely moving assays. In a multi-spout brief-access consumption task, mice displayed licking as a function of concentration of sucrose, quinine, and sodium chloride, with licking modulated by homeostatic or circadian influences. Finally, to highlight the functionality of OHRBETS, we measured mesolimbic dopamine signals during the multi-spout brief-access task that display strong correlations with relative solution value and magnitude of consumption. All designs, programs, and instructions are provided freely online. This customizable platform enables replicable operant and consummatory behaviors and can be incorporated with methods to perturb and record neural dynamics in vivo.

Data availability

All data and analysis code for the paper to reproduce figures and findings can be found at: 10.5281/zenodo.7552454Repository of code required to build the system can be found at:https://github.com/stuberlab/OHRBETS

The following data sets were generated

Article and author information

Author details

  1. Adam Gordon-Fennell

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joumana M Barbakh

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. MacKenzie T Utley

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9488-0819
  4. Shreya Singh

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Paula Bazzino

    Department of Psychology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Raaj Gowrishankar

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael R Bruchas

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4713-7816
  8. Mitchell F Roitman

    Department of Psychology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Garret D Stuber

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    For correspondence
    gstuber@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1730-4855

Funding

National Institute on Drug Abuse (DA032750)

  • Garret D Stuber

National Institute on Drug Abuse (DA038168)

  • Garret D Stuber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were pre-approved by Animal Care and Use Committees (IACUC) at the University of Washington (#4450-01) or University of Illinois at Chicago (#20-031)

Copyright

© 2023, Gordon-Fennell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,733
    views
  • 326
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam Gordon-Fennell
  2. Joumana M Barbakh
  3. MacKenzie T Utley
  4. Shreya Singh
  5. Paula Bazzino
  6. Raaj Gowrishankar
  7. Michael R Bruchas
  8. Mitchell F Roitman
  9. Garret D Stuber
(2023)
An open-source platform for head-fixed operant and consummatory behavior
eLife 12:e86183.
https://doi.org/10.7554/eLife.86183

Share this article

https://doi.org/10.7554/eLife.86183

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.