Tiered sympathetic control of cardiac function revealed by viral tracing and single cell transcriptome profiling

  1. Sachin Sharma
  2. Russell Littman
  3. John D Tompkins
  4. Douglas Arneson
  5. Jaime Contreras
  6. Al-Hassan Dajani
  7. Kaitlyn Ang
  8. Amit Tsanhani
  9. Xin Sun
  10. Patrick Y Jay
  11. Herbert Herzog
  12. Xia Yang
  13. Olujimi A Ajijola  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. University of California, San Francisco, United States
  3. University of California, San Diego, United States
  4. Alnylam Pharmaceuticals, United States
  5. Garvan Institute of Medical Research, Australia

Abstract

The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) neuropeptide-Y (NPY) -expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.

Data availability

Data related to single-cell RNA seq analysis generated from this manuscript are available from the GEO database (GSE231924)

The following data sets were generated

Article and author information

Author details

  1. Sachin Sharma

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6776-1061
  2. Russell Littman

    Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. John D Tompkins

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9496-7930
  4. Douglas Arneson

    Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Jaime Contreras

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Al-Hassan Dajani

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Kaitlyn Ang

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Amit Tsanhani

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Xin Sun

    Department of Pediatrics, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8387-4966
  10. Patrick Y Jay

    Alnylam Pharmaceuticals, Cambridge, United States
    Competing interests
    Patrick Y Jay, is affiliated with Alnylam Pharmaceuticals..
  11. Herbert Herzog

    Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1713-1029
  12. Xia Yang

    Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  13. Olujimi A Ajijola

    Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    OAjijola@mednet.ucla.edu
    Competing interests
    Olujimi A Ajijola, is a co-founder of NeuCures Inc.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6197-7593

Funding

NIH Office of the Director (DP2HL142045)

  • Olujimi A Ajijola

NHLBI Division of Intramural Research (R01HL162717)

  • Olujimi A Ajijola

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments complied with institutional guidelines and ethical regulations, and the study protocol was approved by the UCLA institutional Animal Care and Use Committee. (protocol number: 18-048).

Copyright

© 2023, Sharma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,362
    views
  • 363
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sachin Sharma
  2. Russell Littman
  3. John D Tompkins
  4. Douglas Arneson
  5. Jaime Contreras
  6. Al-Hassan Dajani
  7. Kaitlyn Ang
  8. Amit Tsanhani
  9. Xin Sun
  10. Patrick Y Jay
  11. Herbert Herzog
  12. Xia Yang
  13. Olujimi A Ajijola
(2023)
Tiered sympathetic control of cardiac function revealed by viral tracing and single cell transcriptome profiling
eLife 12:e86295.
https://doi.org/10.7554/eLife.86295

Share this article

https://doi.org/10.7554/eLife.86295

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Ole Bæk, Tik Muk ... Duc Ninh Nguyen
    Research Article

    Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.

    1. Medicine
    2. Microbiology and Infectious Disease
    Kavidha Reddy, Guinevere Q Lee ... Thumbi Ndung'u
    Research Article

    Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297–1203) days post-onset of viremia (DPOV) and 24 at 1 (1–3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.