Systematic analysis of the molecular and biophysical properties of key DNA damage response factors

  1. Joshua R Heyza
  2. Mariia Mikhova
  3. Aastha Bahl
  4. David Broadbent
  5. Jens C Schmidt  Is a corresponding author
  1. Michigan State University, United States

Abstract

Repair of DNA double strand breaks (DSBs) is integral to preserving genomic integrity. Therefore, defining the mechanisms underlying DSB repair will enhance our understanding of how defects in these pathways contribute to human disease and could lead to the discovery of new approaches for therapeutic intervention. Here, we established a panel of HaloTagged DNA damage response factors in U2OS cells which enables concentration-dependent protein labeling by fluorescent HaloTag ligands. Genomic insertion of HaloTag at the endogenous loci of these repair factors preserves expression levels and proteins retain proper subcellular localization, foci-forming ability, and functionally support DSB repair. We systematically analyzed total cellular protein abundance, measured recruitment kinetics to laser-induced DNA damage sites, and defined the diffusion dynamics and chromatin binding characteristics by live-cell single-molecule imaging. Our work demonstrates that the Shieldin complex, a critical factor in end-joining, does not exist in a preassembled state and that relative accumulation of these factors at DSBs occurs with different kinetics. Additionally, live-cell single-molecule imaging revealed the constitutive interaction between MDC1 and chromatin mediated by its PST repeat domain. Altogether, our studies demonstrate the utility of single-molecule imaging to provide mechanistic insights into DNA repair, which will serve as a powerful resource for characterizing the biophysical properties of DNA repair factors in living cells.

Data availability

All uncropped images for gels and blots included in this manuscript have been provided as Source Data.

Article and author information

Author details

  1. Joshua R Heyza

    Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0847-0501
  2. Mariia Mikhova

    Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aastha Bahl

    Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David Broadbent

    Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0940-1068
  5. Jens C Schmidt

    Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, United States
    For correspondence
    schmi706@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9061-7853

Funding

National Institutes of Health (F32GM139292)

  • Joshua R Heyza

National Institutes of Health (DP2GM142307)

  • Jens C Schmidt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Heyza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,185
    views
  • 193
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua R Heyza
  2. Mariia Mikhova
  3. Aastha Bahl
  4. David Broadbent
  5. Jens C Schmidt
(2023)
Systematic analysis of the molecular and biophysical properties of key DNA damage response factors
eLife 12:e87086.
https://doi.org/10.7554/eLife.87086

Share this article

https://doi.org/10.7554/eLife.87086

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.