Abstract

The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies e.g. bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.

Data availability

- Diffraction data have been deposited in PDB under the accession code 8ALO-SAXS data have been deposited:ToxR - SASDR25https://www.sasbdb.org/data/SASDR25/x14svn58xr/ToxS - SASDR35https://www.sasbdb.org/data/SASDR35/ti6yxfu94f/ToxR:ToxS -SASDR45https://www.sasbdb.org/data/SASDR45/8t9oq6fvvj/ToxR:ToxS:bile - SASDR55https://www.sasbdb.org/data/SASDR55/1f1om17ki6/- All data generated or analysed during this study are included in the manuscript and supporting files

The following data sets were generated

Article and author information

Author details

  1. Nina Gubensäk

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    For correspondence
    nina.gubensaek@uni-graz.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0415-4299
  2. Theo Sagmeister

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  3. Christoph Buhlheller

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  4. Bruno Di Geronimo

    Laboratory of Computer-Aided Molecular Design, Medical University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  5. Gabriel E Wagner

    Institute of Chemistry, Medical University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5704-3955
  6. Lukas Petrowitsch

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  7. Melissa A Gräwert

    Biological Small Angle Scattering, EMBL Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
  8. Markus Rotzinger

    Institute of Chemistry, University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0411-3403
  9. Tamara M Ismael Berger

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  10. Jan Schäfer

    RedShiftBio, Boxborough, United States
    Competing interests
    Jan Schäfer, is affiliated with Redshift BioAnalytics, Inc. which distributes the AQS3pro. Access to the AQS3pro instrument was provided to Nina Gubensäk as part of the RedShiftBio demo lab..
  11. Isabel Usón

    Crystallographic Methods, Institute of Molecular Biology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  12. Joachim Reidl

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  13. Pedro A Sánchez-Murcia

    Laboratory of Computer-Aided Molecular Design, Medical University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  14. Klaus Zangger

    Institute of Chemistry, University of Graz, Graz, Austria
    Competing interests
    No competing interests declared.
  15. Tea Pavkov-Keller

    Institute of Chemistry, University of Graz, Graz, Austria
    For correspondence
    tea.pavkov@uni-graz.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7871-6680

Funding

Austrian Science Fund (FWF T-1239)

  • Nina Gubensäk

Austrian Science Fund (FWF DK W09)

  • Klaus Zangger

Austrian Science Fund (FWF P 29405)

  • Joachim Reidl

Land Steiermark (1109)

  • Klaus Zangger

Spanish MICINN/AEI/FEDER/UE (PID2021-128751NB-I00)

  • Isabel Usón

Austrian Science Fund (Biomolecular Structures and Interactions DOC 130)

  • Tea Pavkov-Keller

Austrian Science Fund (Molecular Metabolism DOC 50)

  • Theo Sagmeister

Fundación Martínez Escudero

  • Bruno Di Geronimo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Gubensäk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,687
    views
  • 269
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nina Gubensäk
  2. Theo Sagmeister
  3. Christoph Buhlheller
  4. Bruno Di Geronimo
  5. Gabriel E Wagner
  6. Lukas Petrowitsch
  7. Melissa A Gräwert
  8. Markus Rotzinger
  9. Tamara M Ismael Berger
  10. Jan Schäfer
  11. Isabel Usón
  12. Joachim Reidl
  13. Pedro A Sánchez-Murcia
  14. Klaus Zangger
  15. Tea Pavkov-Keller
(2023)
Vibrio cholerae's ToxRS bile sensing system
eLife 12:e88721.
https://doi.org/10.7554/eLife.88721

Share this article

https://doi.org/10.7554/eLife.88721

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.