Conserved biophysical compatibility among the highly variable germline-encoded regions shapes TCR-MHC interactions

  1. Christopher T Boughter  Is a corresponding author
  2. Martin Meier-Schellersheim
  1. National Institute of Allergy and Infectious Diseases, United States

Abstract

T cells are critically important components of the adaptive immune system primarily responsible for identifying and responding to pathogenic challenges. This recognition of pathogens is driven by the interaction between membrane-bound T cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules. The formation of the TCR-peptide-MHC complex (TCR-pMHC) involves interactions among germline-encoded and hypervariable amino acids. Germline-encoded and hypervariable regions can form contacts critical for complex formation, but only interactions between germline-encoded contacts are likely to be shared across many of all the possible productive TCR-pMHC complexes. Despite this, experimental investigation of these interactions have focused on only a small fraction of the possible interaction space. To address this, we analyzed every possible germline-encoded TCR-MHC contact in humans, thereby generating the first comprehensive characterization of these largely antigen-independent interactions. Our computational analysis suggests that germline-encoded TCR-MHC interactions that are conserved at the sequence level are rare due to the high amino acid diversity of the TCR CDR1 and CDR2 loops, and that such conservation is unlikely to dominate the dynamic protein-protein binding interface. Instead, we propose that binding properties such as the docking orientation are defined by regions of biophysical compatibility between these loops and the MHC surface.

Data availability

All data and code used for the analysis in this manuscript are freely available online with no restrictions. All input FASTA sequences and code needed to recreate the analysis can be found via the AIMS GitHub page: github.com/ctboughter/AIMS. Specific analysis for structural comparisons between interaction potentials and TCR-pMHC complexes are found via a separate repository, called PRESTO, also hosted on GitHub: github.com/ctboughter/PRESTO. Due to the significant time required to calculate the interaction scores calculated via AIMS, the calculated scores can be found on Zenodo at the following DOI: 10.5281/zenodo.7023681. In case of future updates to either AIMS or PRESTO, the specific versions used for this manuscript are also hosted on Zenodo, as AIMS v0.8 [DOI: 10.5281/zenodo.7025972] and PRESTO v0.2 [DOI: 10.5281/zenodo.7025652].

The following previously published data sets were used

Article and author information

Author details

  1. Christopher T Boughter

    Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    For correspondence
    christopher.boughter@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7106-4699
  2. Martin Meier-Schellersheim

    Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8754-6377

Funding

National Institutes of Health

  • Christopher T Boughter
  • Martin Meier-Schellersheim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,021
    views
  • 128
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher T Boughter
  2. Martin Meier-Schellersheim
(2023)
Conserved biophysical compatibility among the highly variable germline-encoded regions shapes TCR-MHC interactions
eLife 12:e90681.
https://doi.org/10.7554/eLife.90681

Share this article

https://doi.org/10.7554/eLife.90681

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.