Mouse SAS‑6 is required for centriole formation in embryos and integrity in embryonic stem cells

  1. Marta Grzonka
  2. Hisham Bazzi  Is a corresponding author
  1. University of Cologne, Germany

Abstract

SAS‑6 (SASS6) is essential for centriole formation in human cells and other organisms but its function in mouse is unclear. Here, we report that Sass6‑mutant mouse embryos lack centrioles, activate the mitotic surveillance cell death pathway and arrest at mid‑gestation. In contrast, SAS‑6 is not required for centriole formation in mouse embryonic stem cells (mESCs), but is essential to maintain centriole architecture. Of note, centrioles appeared after just one day of culture of Sass6‑mutant blastocysts, from which mESCs are derived. Conversely, the number of cells with centrosomes is drastically decreased upon the exit from a mESC pluripotent state. At the mechanistic level, the activity of the master kinase in centriole formation, PLK4, associated with increased centriolar and centrosomal protein levels, endow mESCs with the robustness in using SAS‑6‑independent centriole-duplication pathways. Collectively, our data suggest a differential requirement for mouse SAS‑6 in centriole formation or integrity depending on PLK4 and centrosome composition.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; source data files have been provided for Figures 2 and 3.

Article and author information

Author details

  1. Marta Grzonka

    Department of Cell Biology of the Skin, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Hisham Bazzi

    Department of Cell Biology of the Skin, University of Cologne, Cologne, Germany
    For correspondence
    hisham.bazzi@uk-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8388-4005

Funding

Deutsche Forschungsgemeinschaft (73111208 - SFB829)

  • Hisham Bazzi

Deutsche Forschungsgemeinschaft (Project-ID 331249414 - BA 5810/1-1)

  • Hisham Bazzi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal generation application (84-02.04.2014.A372), notifications and breeding applications (84-02.05.50.15.039, 84-02.04.2015.A405, UniKöln_Anzeige{section sign}4.20.026, 84-02.04.2018.A401, 81-02.04.2021.A130) were approved by the Landesamt für Natur, Umwelt, und Verbraucherschutz Nordrhein-Wesdalen (LANUV-NRW) in Germany.

Copyright

© 2024, Grzonka & Bazzi

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 756
    views
  • 123
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Grzonka
  2. Hisham Bazzi
(2024)
Mouse SAS‑6 is required for centriole formation in embryos and integrity in embryonic stem cells
eLife 13:e94694.
https://doi.org/10.7554/eLife.94694

Share this article

https://doi.org/10.7554/eLife.94694

Further reading

    1. Developmental Biology
    Wei Yan
    Editorial

    The articles in this special issue highlight the diversity and complexity of research into reproductive health, including the need for a better understanding of the fundamental biology of reproduction and for new treatments for a range of reproductive disorders.

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.