Genetic Chimerism: Marmosets contain multitudes
Marmosets almost always produce non-identical twins which, unusually, share much more than just a womb. The same circulatory system connects the siblings during pregnancy, allowing two genetically distinct individuals to freely exchange the hematopoietic stem cells that give rise to all blood and immune cells (Gengozian et al., 1969; Wislocki, 1939; Hill, 1932). As a result, a drop of blood from this tiny South American primate reveals a mixture of cells originating from each twin (Benirschike and Brownhill, 1962). This is known as sibling chimerism – from Chimera, the monster from Greek mythology that is a hybrid of a lion, a goat and other creatures.
This quirk of nature has been known for decades (Benirschke et al., 1962). Yet, while studies have detected genetic information from the other twin in certain organs, it has remained difficult to precisely test whether sibling chimerism is limited to blood-related cells or extends to other cell types (Sweeney et al., 2012; Ross et al., 2007). Answering this question would help to uncover how cellular exchange takes place between marmoset twins, while also allowing researchers to investigate how genetic variations affect cell function in vivo. However, this requires technology that has only become recently available, and which makes it possible to isolate and sequence the genetic material of individual cells in a single tissue. If different genomes are identified in a heart sample, for example, these newer approaches can now distinguish whether they originate from the muscle cells of the heart, the blood cells pumped through it, or the resident immune cells that protect it. Now, in eLife, Ricardo del Rosario, Steven McCarroll and colleagues at Harvard Medical School, the Broad Institute and MIT report having addressed this knowledge gap by applying single-cell sequencing to various marmoset organs (del Rosario et al., 2024).
Rather than focusing on DNA, the team took advantage of the thousands of genetic variants transcribed into RNAs and opted instead for single-nucleus RNA-sequencing. Being able to capture all the genes being transcribed in an individual cell did double duty. del Rosario et al. could identify which tissues contained cells from the other twin; and they could also examine the impact of these genetic differences on gene expression patterns and cell function.
To investigate the first question, the team tested for sibling chimerism in the blood, liver, kidney and brain – all tissues which contain varying amounts of cell types deriving from hematopoietic stem cells. This confirmed that chimerism is prevalent and widespread in marmosets, while also allowing del Rosario et al. to precisely identify which cells were from the sampled individual, and which were from its twin. In doing so, they demonstrated that sibling chimerism is limited to cells from the two lineages (myeloid and lymphoid) that hematopoietic stem cells give rise to. Across the organs studied, all the other cell types examined originated from the twin being sampled (Figure 1).

Investigating sibling chimerism in marmosets.
Marmosets almost always produce non-identical twins (also known as fraternal or dizygotic twins). However, these siblings are more alike than expected because they share a circulatory system in the womb, which allows them to exchange hematopoietic stem cells. As a result, the tissues and organs of the adult twins can contain cells carrying the genetic information of their sibling (orange cells in the yellow individual, and vice versa). Single-nucleus RNA sequencing approaches allowed del Rosario et al. to investigate which tissues contained cells from both twins, and in which proportion. This showed that only cells derived from hematopoietic stem cells display such ‘sibling chimerism’. In the brain, for example, the team found evidence for this phenomenon primarily in just one type of cell – immune cells known as microglia – with other cell types (such as neurons) being solely from the individual sampled.
The team then turned its attention to microglia, the primary immune cells of the brain, using a single-nucleus RNA-sequencing dataset of more than 2.2 million cells from various brain regions of 11 marmosets (Krienen et al., 2023). Consistent with the findings for non-brain tissues, this analysis first revealed that the proportion of sibling-derived microglia varies between the brain areas of an individual. del Rosario et al. suggest two possible explanations for this finding: (1) Such variations may be due to cell migration and proliferation taking place in a random manner, with the level of sibling-derived cells reflecting which cells arrived first and multiplied the most in a tissue. (2) Alternatively, cells from the twin may be recruited and proliferate differently across brain tissues and even local environments due to their genetic background.
To then test if genetic variations between cells could indeed impact their expression patterns, del Rosario et al. directly compared how microglia in the same brain region expressed their genes depending on whether they were from the sampled animal or its twin. When assessing if cells facing the same constraints respond differently because of variations in their genomes, this is as environmentally controlled a study can get in a living animal – nature’s very own common garden experiment, where scientists examine how populations of different genetic origins fare when facing the same conditions. The results show that the local environment, such as which brain region the cells were in, had a much larger impact in shaping gene expression than the genetic background. This does not indicate that genetic variation is unimportant, but it does highlight how cells – no matter who they come from – are very good at doing their job when they find themselves in the right place at the right time.
All told, this thoughtful and thorough study accomplishes two important goals. First, it all but closes a previously open question on the extent and cell origins of sibling chimerism. Second, it sets the stage for using this unique model system to examine, in a natural context, how genetic variation in microglia may impact brain development, function, and disease.
References
-
Further observations on marrow chimerism in marmosetsCytogenetics 1:245–257.https://doi.org/10.1159/000129734
-
The developmental history of the primatesPhilosophical Transactions of the Royal Society of London. Series B 221:45–178.https://doi.org/10.1098/rstb.1932.0002
-
Observations on twinning in marmosetsAmerican Journal of Anatomy 64:445–483.https://doi.org/10.1002/aja.1000640305
Article and author information
Author details
Publication history
Copyright
© 2024, Chiou and Snyder-Mackler
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 532
- views
-
- 33
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
Genetic effects on complex traits may depend on context, such as age, sex, environmental exposures, or social settings. However, it remains often unclear if the extent of context dependency, or gene-by-environment interaction (GxE), merits more involved models than the additive model typically used to analyze data from genome-wide association studies (GWAS). Here, we suggest considering the utility of GxE models in GWAS as a trade-off between bias and variance parameters. In particular, we derive a decision rule for choosing between competing models for the estimation of allelic effects. The rule weighs the increased estimation noise when context is considered against the potential bias when context dependency is ignored. In the empirical example of GxSex in human physiology, the increased noise of context-specific estimation often outweighs the bias reduction, rendering GxE models less useful when variants are considered independently. However, for complex traits, we argue that the joint consideration of context dependency across many variants mitigates both noise and bias. As a result, polygenic GxE models can improve both estimation and trait prediction. Finally, we exemplify (using GxDiet effects on longevity in fruit flies) how analyses based on independently ascertained ‘top hits’ alone can be misleading, and that considering polygenic patterns of GxE can improve interpretation.
-
- Biochemistry and Chemical Biology
- Genetics and Genomics
Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.