Emergence of power-law distributions in protein-protein interaction networks through study bias

  1. David B Blumenthal  Is a corresponding author
  2. Marta Lucchetta
  3. Linda Kleist
  4. Sándor P Fekete
  5. Markus List  Is a corresponding author
  6. Martin H Schaefer  Is a corresponding author
  1. University of Erlangen-Nuremberg, Germany
  2. European Institute of Oncology, Italy
  3. Technische Universität Braunschweig, Germany
  4. Technical University of Munich, Germany

Abstract

Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study bias affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.

Data availability

We analyzed only previously published data for this work. To facilitate reproducibility, we deposited the used datasets at https://zenodo.org/record/8288898.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. David B Blumenthal

    Department Artificial Intelligence in Biomedical Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
    For correspondence
    david.b.blumenthal@fau.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8651-750X
  2. Marta Lucchetta

    Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Linda Kleist

    Department of Computer Science, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sándor P Fekete

    Department of Computer Science, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Markus List

    Data Science in Systems Biology, Technical University of Munich, Freising, Germany
    For correspondence
    markus.list@tum.de
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin H Schaefer

    Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
    For correspondence
    martin.schaefer@ieo.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7503-6364

Funding

Bundesministerium für Bildung und Forschung (031L0309A)

  • David B Blumenthal

Klaus Tschira Stiftung (00.003.2024)

  • David B Blumenthal
  • Markus List
  • Martin H Schaefer

Fondazione AIRC per la ricerca sul cancro ETS (MFAG 21791)

  • Martin H Schaefer

Fondazione AIRC per la ricerca sul cancro ETS (Bridge Grant n. 29162)

  • Martin H Schaefer

Ministero della Salute (Ricerca Corrente)

  • Martin H Schaefer

Ministero della Salute (5x1000 funds)

  • Martin H Schaefer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Blumenthal et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 685
    views
  • 135
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David B Blumenthal
  2. Marta Lucchetta
  3. Linda Kleist
  4. Sándor P Fekete
  5. Markus List
  6. Martin H Schaefer
(2024)
Emergence of power-law distributions in protein-protein interaction networks through study bias
eLife 13:e99951.
https://doi.org/10.7554/eLife.99951

Share this article

https://doi.org/10.7554/eLife.99951

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.