Cell Migration: Pump up the volume
Cell migration is essential for most processes in the body, such as embryonic development, immune responses or wound repair. The ability of cells to migrate is a complex phenomenon that depends on many factors, including the polymerization of actin filaments. For a cell to move, actin filaments and other proteins in the cytoskeleton actively polymerize against the cell membrane to generate protrusions and push the cell surface forward.
In recent years, however, it has become evident that ion and water flow through the cell membrane might also be involved in cell movement (Stroka et al., 2014; Li et al., 2020). A polarized distribution of ion channels and transporters can generate a small osmolarity gradient in the cytoplasm, and the resulting influx of ions and water molecules can cause the cell to swell at its leading edge and to shrink at its trailing edge, thereby enabling it to move. However, the mechanisms underlying these processes are not fully understood.
Now, in eLife, Tamas Nagy, Evelyn Strickland and Orion Weiner at the University of California San Francisco report that innate immune cells known as neutrophils rely on water flux to help them move quickly to the sites of infection or injury (Nagy et al., 2024). It is well known that neutrophils use actin to relocate, but it has also been shown that they can increase the influx of water into the cell – and consequently their volume and motility – in response to molecules known as chemoattractants (Weiner et al., 1999).
To better understand the impact of water and ions on cell movement, Nagy et al. used a technique, called Fluorescence Exclusion Method, which can track changes in the volumes of single cells (Cadart et al., 2017). This revealed that when the neutrophils were exposed to chemoattractants, the cells started to swell and became mobile.
Building on these findings, Nagy et al. sought to identify the molecules that regulate water-driven migration in neutrophils: this was a challenging task because numerous ion transporters and regulatory proteins are involved in the process (Hoffmann et al., 2009). To navigate this complexity, they combined genome-wide CRISPR/Cas9 knockout screening with an approach that separated cells according to their buoyant density (Shalem et al., 2014). In brief, they generated single-gene knockouts for every gene in the genome and identified which knockouts swelled when exposed to chemoattractants, and which did not.
Many of the genes they identified as being involved in cell swelling and migration were already known, such as the genes encoding the ion transporters NHE1 and AE2 (Li et al., 2021). However, a gene called PI3Kγ – primarily known for its roles in cell growth and cell phenotype specification – also emerged as a candidate (Mendoza et al., 2011; Madsen, 2020). Nagy et al. then performed further experiments to confirm that these regulators were responsible for the positive correlation between the changes in cell volume and migration velocity. Tests involving hypo-osmotic shocks provided evidence of the relationship between NHE1-driven water flux and cell motility. In summary, Nagy et al. demonstrated that cell swelling is both necessary and sufficient for neutrophils to move following stimulation with chemoattractants. It also complements cytoskeletal rearrangements to enhance migration speed.
The exciting findings by Nagy et al. usher in a new era of exploration that intersects cytoskeletal dynamics and cell electrophysiology. Intracellular electrophysiological homeostasis – the balance between ions, proteins and water – is maintained by a complex system involving numerous ion transporters and the actin cytoskeleton.
Conversely, the intracellular ionic environment can influence cytoskeletal activity and force generation (de Boer et al., 2023; Webb et al., 2011). Previous studies have shown that molecular interactions between actin, NHE1 and Akt (which is a target of PI3K) regulate actin organization, intracellular pH and cell migration, while recent work suggests that non-cancerous cells often use actin-NHE1 crosstalk to mediate mechanosensitive adaptations to environmental stimuli (Denker et al., 2000; Denker and Barber, 2002; Meima et al., 2009; Ni et al., 2024).
Collectively, these studies highlight a deeply interconnected system where PI3K and Akt form a hub that potentially links the mechanical ‘players’ in the cell (such as F-actin and myosin II) with the electrophysiological players (such as NHE1)(De Belly et al., 2023), thereby regulating cell migration, mechanosensation and growth.
Given the complicated nature of this mechano-electrophysiological system, comprehensive, high-throughput methods (such as genome-wide knockout screening) are highly valuable. Mathematical models based on such large-scale data will also be instrumental in understanding the underlying interactions. For example, large-scale genomic datasets have revealed the importance of ion transporters in cancer cells, with key elements once again being ion transporters in the NHE and AE families (Shorthouse et al., 2018). It is likely that the system governing ionic and water content regulation, cell migration and metabolism forms the basis of essential biological processes such as growth and morphogenesis, and that alterations in the system could be the origin of many diseases.
References
-
Fluorescence eXclusion Measurement of volume in live cellsMethods in Cell Biology 139:103–120.https://doi.org/10.1016/bs.mcb.2016.11.009
-
Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1The Journal of Cell Biology 159:1087–1096.https://doi.org/10.1083/jcb.200208050
-
Physiology of cell volume regulation in vertebratesPhysiological Reviews 89:193–277.https://doi.org/10.1152/physrev.00037.2007
-
The importance of water and hydraulic pressure in cell dynamicsJournal of Cell Science 133:jcs240341.https://doi.org/10.1242/jcs.240341
-
Hydrogen, bicarbonate, and their associated exchangers in cell volume regulationFrontiers in Cell and Developmental Biology 9:1–22.https://doi.org/10.3389/fcell.2021.683686
-
PI3K in stemness regulation: from development to cancerBiochemical Society Transactions 48:301–315.https://doi.org/10.1042/BST20190778
-
The sodium-hydrogen exchanger NHE1 is an Akt substrate necessary for actin filament reorganization by growth factorsThe Journal of Biological Chemistry 284:26666–26675.https://doi.org/10.1074/jbc.M109.019448
-
The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensationTrends in Biochemical Sciences 36:320–328.https://doi.org/10.1016/j.tibs.2011.03.006
-
Dysregulated pH: a perfect storm for cancer progressionNature Reviews. Cancer 11:671–677.https://doi.org/10.1038/nrc3110
-
Spatial control of actin polymerization during neutrophil chemotaxisNature Cell Biology 1:75–81.https://doi.org/10.1038/10042
Article and author information
Author details
Publication history
Copyright
© 2024, Ni and Sun
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 664
- views
-
- 56
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional ‘M1-like’ CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the ‘M1-like’ CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and ‘M1-like’ ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.
-
- Cell Biology
Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.