Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction

Abstract

Women live on average longer than men, but have greater levels of late-life morbidity. We have uncovered a substantial sex difference in the pathology of the ageing gut in Drosophila. The intestinal epithelium of the ageing female undergoes major deterioration, driven by intestinal stem cell (ISC) division, while lower ISC activity in males associates with delay or absence of pathology, and better barrier function, even at old ages. Males succumb to intestinal challenges to which females are resistant, associated with fewer proliferating ISCs, suggesting a trade-off between highly active repair mechanisms and late-life pathology in females. Dietary restriction reduces gut pathology in ageing females, and extends female lifespan more than male. By genetic sex reversal of a specific gut region, we induced female-like ageing pathologies in males, associated with decreased lifespan, but also with a greater increase in longevity in response to dietary restriction.

Article and author information

Author details

  1. Jennifer C Regan

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    For correspondence
    j.regan@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Mobina Khericha

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam J Dobson

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ekin Bolukbasi

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Nattaphong Rattanavirotkul

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Linda Partridge

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Regan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,694
    views
  • 1,706
    downloads
  • 200
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer C Regan
  2. Mobina Khericha
  3. Adam J Dobson
  4. Ekin Bolukbasi
  5. Nattaphong Rattanavirotkul
  6. Linda Partridge
(2016)
Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction
eLife 5:e10956.
https://doi.org/10.7554/eLife.10956

Share this article

https://doi.org/10.7554/eLife.10956

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.