PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila

  1. Martin Borch Jensen  Is a corresponding author
  2. Yanyan Qi
  3. Rebeccah Riley
  4. Liya Rabkina
  5. Heinrich Jasper  Is a corresponding author
  1. Buck Institute for Research on Aging, United States
  2. Buck Institute For Research On Aging, United States

Abstract

The mitochondrial unfolded protein response (UPRmt) has been associated with long lifespan across metazoans. In C. elegans, mild developmental mitochondrial stress activates UPRmt reporters and extends lifespan. We show that similar developmental stress is necessary and sufficient to extend Drosophila lifespan, and identify Phosphoglycerate Mutase 5 (PGAM5) as a mediator of this response. Developmental mitochondrial stress leads to activation of FoxO, via Apoptosis Signal-regulating Kinase 1 (ASK1) and Jun-N-terminal Kinase (JNK). This activation persists into adulthood and induces a select set of chaperones, many of which have been implicated in lifespan extension in flies. Persistent FoxO activation can be reversed by a high protein diet in adulthood, through mTORC1 and GCN-2 activity. Accordingly, the observed lifespan extension is prevented on a high protein diet and in FoxO-null flies. The diet-sensitivity of this pathway has important implications for interventions that seek to engage the UPRmt to improve metabolic health and longevity.

Article and author information

Author details

  1. Martin Borch Jensen

    Buck Institute for Research on Aging, Novato, United States
    For correspondence
    martinborchjensen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Yanyan Qi

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rebeccah Riley

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Liya Rabkina

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Heinrich Jasper

    Buck Institute For Research On Aging, Novato, United States
    For correspondence
    hjasper@buckinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6014-4343

Funding

National Institute on Aging (R01 AG028127)

  • Yanyan Qi
  • Rebeccah Riley
  • Heinrich Jasper

American Federation for Aging Research (Breakthroughs in Gerontology award)

  • Heinrich Jasper

Alfred Benzon Foundation (Postdoctoral fellowship)

  • Martin Borch Jensen

National Institute on Aging (R01 AG050104)

  • Yanyan Qi
  • Rebeccah Riley
  • Heinrich Jasper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Borch Jensen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,418
    views
  • 746
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Borch Jensen
  2. Yanyan Qi
  3. Rebeccah Riley
  4. Liya Rabkina
  5. Heinrich Jasper
(2017)
PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila
eLife 6:e26952.
https://doi.org/10.7554/eLife.26952

Share this article

https://doi.org/10.7554/eLife.26952

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.