Computer-guided design of optimal microbial consortia for immune system modulation

  1. Richard R Stein  Is a corresponding author
  2. Takeshi Tanoue
  3. Rose L Szabady
  4. Shakti K Bhattarai
  5. Bernat Olle
  6. Jason M Norman
  7. Wataru Suda
  8. Kenshiro Oshima
  9. Masahira Hattori
  10. Georg K Gerber
  11. Chris Sander
  12. Kenya Honda
  13. Vanni Bucci  Is a corresponding author
  1. Dana-Farber Cancer Institute, United States
  2. RIKEN Institute, Japan
  3. Vedanta Biosciences, Inc, United States
  4. University of Massachusetts, United States
  5. Keio University School of Medicine, Japan
  6. The University of Tokyo, Japan
  7. Brigham and Women's Hospital, United States

Abstract

Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome composition and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contribution of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Richard R Stein

    Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    stein@jimmy.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5110-6863
  2. Takeshi Tanoue

    Center for Integrative Medical Sciences, RIKEN Institute, Yokohama City, Japan
    Competing interests
    Takeshi Tanoue, Has received support from Vedanta Biosciences, Inc. under research agreement with his institution.
  3. Rose L Szabady

    Vedanta Biosciences, Inc, Cambridge, United States
    Competing interests
    Rose L Szabady, Is employee of Vedanta Biosciences, Inc.
  4. Shakti K Bhattarai

    Engineering and Applied Sciences PhD Program, University of Massachusetts, Dartmouth, United States
    Competing interests
    No competing interests declared.
  5. Bernat Olle

    Vedanta Biosciences, Inc, Cambridge, United States
    Competing interests
    Bernat Olle, Is the Chief Executive Officer of Vedanta Biosciences, Inc.
  6. Jason M Norman

    Vedanta Biosciences, Inc, Cambridge, United States
    Competing interests
    Jason M Norman, Is employee of Vedanta Biosciences, Inc.
  7. Wataru Suda

    Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Kenshiro Oshima

    Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  9. Masahira Hattori

    Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  10. Georg K Gerber

    Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    Georg K Gerber, Is a member of the Scientific Advisory Board of Kaleido, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9149-5509
  11. Chris Sander

    Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Kenya Honda

    Center for Integrative Medical Sciences, RIKEN Institute, Yokohama City, Japan
    Competing interests
    Kenya Honda, Is a Co-Founder and Scientific Advisory Board Member of Vedanta Biosciences, Inc. Has received support from Vedanta Biosciences, Inc. under research agreements with his institution.
  13. Vanni Bucci

    Engineering and Applied Sciences PhD Program, University of Massachusetts, Dartmouth, United States
    For correspondence
    vanni.bucci@umassd.edu
    Competing interests
    Vanni Bucci, Has received support from Vedanta Biosciences, Inc. under research agreement with his institution.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3257-2922

Funding

National Institutes of Health (P41 GM103504)

  • Richard R Stein
  • Chris Sander

Brigham and Women's Hospital (Precision Medicine Initiative)

  • Georg K Gerber

Defense Advanced Research Projects Agency (BRICS award HR0011-15-C-0094)

  • Georg K Gerber

Human Frontier Science Program (RGP00055/2015)

  • Chris Sander

Takeda Science Foundation

  • Kenya Honda

National Institute of General Medical Sciences (5R01 GM106303)

  • Chris Sander

Japan Agency for Medical Research and Development

  • Kenya Honda

National Institute of Allergy and Infectious Diseases

  • Vanni Bucci

National Science Foundation

  • Vanni Bucci

Core Research for Evolutional Science and Technology

  • Kenya Honda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: 11-strain time-series mouse experiments were performed under ethical approval by RIKEN, Keio and Azabu Universities under protocol H24-9(14) (RIKEN). 4-strain validation mouse work was performed at Brigham and Women's Hospital in Boston, MA in the Massachusetts Host Microbiome Center under IACUC protocol 2016N000141.

Copyright

© 2018, Stein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,991
    views
  • 1,371
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard R Stein
  2. Takeshi Tanoue
  3. Rose L Szabady
  4. Shakti K Bhattarai
  5. Bernat Olle
  6. Jason M Norman
  7. Wataru Suda
  8. Kenshiro Oshima
  9. Masahira Hattori
  10. Georg K Gerber
  11. Chris Sander
  12. Kenya Honda
  13. Vanni Bucci
(2018)
Computer-guided design of optimal microbial consortia for immune system modulation
eLife 7:e30916.
https://doi.org/10.7554/eLife.30916

Share this article

https://doi.org/10.7554/eLife.30916

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.