Immune mediated hookworm clearance and survival of a marine mammal decreases with warmer ocean temperatures

  1. Mauricio Seguel  Is a corresponding author
  2. Felipe Montalva
  3. Diego Perez-Venegas
  4. Josefina Gutiérrez
  5. Hector J Paves
  6. Ananda Muller
  7. Carola Valencia
  8. Elizabeth Howerth
  9. Victoria Mendiola
  10. Nicole Gottdenker
  1. University of Georgia, United States
  2. Pontificia Universidad Católica de Chile, Chile
  3. Universidad Andrés Bello, Chile
  4. Universidad Austral de Chile, Chile
  5. Universidad Santo Tomas, Chile

Abstract

Increases in ocean temperature are associated with changes in the distribution of fish stocks, and the foraging regimes and maternal attendance patterns of marine mammals. However, it is not well understood how these changes affect offspring health and survival. The maternal attendance patterns and immunity of South American fur seals were assessed in a rookery where hookworm disease is the main cause of pup mortality. Pups receiving higher levels of maternal attendance had a positive energy balance and a more reactive immune system. These pups were able to expel hookworms through a specific immune mediated mechanism and survived the infection. Maternal attendance was higher in years with low sea surface temperature, therefore, the mean hookworm burden and mortality increased with sea surface temperature over a 10-year period. We provide a mechanistic explanation regarding how changes in ocean temperature and maternal care affect infectious diseases dynamics in a marine mammal.

Data availability

All data generated or analysed during this study are included in the manuscript and/or uploaded as supplementary materials

Article and author information

Author details

  1. Mauricio Seguel

    Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, United States
    For correspondence
    mseguel@uga.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0465-236X
  2. Felipe Montalva

    Departmento de Biología Marina, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    The authors declare that no competing interests exist.
  3. Diego Perez-Venegas

    Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
    Competing interests
    The authors declare that no competing interests exist.
  4. Josefina Gutiérrez

    Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
    Competing interests
    The authors declare that no competing interests exist.
  5. Hector J Paves

    Departamento de Ciencias Básicas, Universidad Santo Tomas, Osorno, Chile
    Competing interests
    The authors declare that no competing interests exist.
  6. Ananda Muller

    Instituto de Ciencias Clínicas Veterinarias, Universidad Austral de Chile, Valdivia, Chile
    Competing interests
    The authors declare that no competing interests exist.
  7. Carola Valencia

    Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
    Competing interests
    The authors declare that no competing interests exist.
  8. Elizabeth Howerth

    Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Victoria Mendiola

    Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicole Gottdenker

    Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Morris Animal Foundation (D16ZO-413)

  • Mauricio Seguel

Society for Marine Mammalogy (Small grants in aid)

  • Mauricio Seguel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments described in this manuscript were conducted with approval of the Chilean fisheries service and the University of Georgia animal use committee (IACUC #A2013 11-004-Y3-A0).

Copyright

© 2018, Seguel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,950
    views
  • 215
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mauricio Seguel
  2. Felipe Montalva
  3. Diego Perez-Venegas
  4. Josefina Gutiérrez
  5. Hector J Paves
  6. Ananda Muller
  7. Carola Valencia
  8. Elizabeth Howerth
  9. Victoria Mendiola
  10. Nicole Gottdenker
(2018)
Immune mediated hookworm clearance and survival of a marine mammal decreases with warmer ocean temperatures
eLife 7:e38432.
https://doi.org/10.7554/eLife.38432

Share this article

https://doi.org/10.7554/eLife.38432

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.