Abstract

Drosophila blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand branchless and receptor breathless, respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.

Data availability

Sequencing data have been deposited in GEO under the accession number GSE146596Elsewhere, data can be visualized at: www.flyrnai.org/scRNA/blood/Data code can accessed at: https://github.com/hbc/A-single-cell-survey-of-Drosophila-blood

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sudhir Gopal Tattikota

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    For correspondence
    sudhir_gt@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0318-5533
  2. Bumsik Cho

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  3. Yifang Liu

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Yanhui Hu

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Victor Barrera

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0590-4634
  6. Michael J Steinbaugh

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2403-2221
  7. Sang-Ho Yoon

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2611-5554
  8. Aram Comjean

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Fangge Li

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  10. Franz Dervis

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  11. Ruei-Jiun Hung

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  12. Jin-Wu Nam

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    No competing interests declared.
  13. Shannan Ho Sui

    Biostatistics, Harvard T H Chan Bioinformatics Core, Boston, United States
    Competing interests
    No competing interests declared.
  14. Jiwon Shim

    Department of Life Science, Hanyang University, Seoul, Republic of Korea
    Competing interests
    Jiwon Shim, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2409-1130
  15. Norbert Perrimon

    Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
    For correspondence
    perrimon@receptor.med.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7542-472X

Funding

Samsung Science and Technology Foundation (SSTF-BA1701-15)

  • Jiwon Shim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tattikota et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,258
    views
  • 1,186
    downloads
  • 156
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sudhir Gopal Tattikota
  2. Bumsik Cho
  3. Yifang Liu
  4. Yanhui Hu
  5. Victor Barrera
  6. Michael J Steinbaugh
  7. Sang-Ho Yoon
  8. Aram Comjean
  9. Fangge Li
  10. Franz Dervis
  11. Ruei-Jiun Hung
  12. Jin-Wu Nam
  13. Shannan Ho Sui
  14. Jiwon Shim
  15. Norbert Perrimon
(2020)
A single-cell survey of Drosophila blood
eLife 9:e54818.
https://doi.org/10.7554/eLife.54818

Share this article

https://doi.org/10.7554/eLife.54818

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.