Abstract

Molecular mimicry is an evolutionary strategy adopted by viruses to exploit the host cellular machinery. We report that SARS-CoV-2 has evolved a unique S1/S2 cleavage site, absent in any previous coronavirus sequenced, resulting in striking mimicry of an identical FURIN-cleavable peptide on the human epithelial sodium channel α-subunit (ENaC-α). Genetic alteration of ENaC-α causes aldosterone dysregulation in patients, highlighting that the FURIN site is critical for activation of ENaC. Single cell RNA-seq from 65 studies shows significant overlap between expression of ENaC-α and the viral receptor ACE2 in cell types linked to the cardiovascular-renal-pulmonary pathophysiology of COVID-19. Triangulating this cellular characterization with cleavage signatures of 178 proteases highlights proteolytic degeneracy wired into the SARS-CoV-2 lifecycle. Evolution of SARS-CoV-2 into a global pandemic may be driven in part by its targeted mimicry of ENaC-α, a protein critical for the homeostasis of airway surface liquid, whose misregulation is associated with respiratory conditions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Praveen Anand

    R&D, nference, Bangalore, India
    Competing interests
    Praveen Anand, The author is an employee of nference..
  2. Arjun Puranik

    Data Science, nference, San Francisco, United States
    Competing interests
    Arjun Puranik, The author is an employee of nference..
  3. Murali Aravamudan

    R&D, nference, Cambridge, United States
    Competing interests
    Murali Aravamudan, The author is an employee of Nference..
  4. AJ Venkatakrishnan

    R&D, nference, Cambridge, United States
    For correspondence
    aj@nference.net
    Competing interests
    AJ Venkatakrishnan, Author is an employee of nference.
  5. Venky Soundararajan

    R&D, nference, Cambridge, United States
    For correspondence
    venky@nference.net
    Competing interests
    Venky Soundararajan, The author is an employee of nference..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7434-9211

Funding

The authors declare that there was no external funding for this work.

Copyright

© 2020, Anand et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 20,468
    views
  • 2,422
    downloads
  • 113
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Praveen Anand
  2. Arjun Puranik
  3. Murali Aravamudan
  4. AJ Venkatakrishnan
  5. Venky Soundararajan
(2020)
SARS-CoV-2 strategically mimics proteolytic activation of human ENaC
eLife 9:e58603.
https://doi.org/10.7554/eLife.58603

Share this article

https://doi.org/10.7554/eLife.58603

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.