Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells

Abstract

Aging, obesity, hypertension and physical inactivity are major risk factors for endothelial dysfunction and cardiovascular disease (CVD). We applied fluorescence-activated cell sorting (FACS), RNA sequencing and bioinformatic methods to investigate the common effects of CVD risk factors in mouse cardiac endothelial cells (ECs). Aging, obesity and pressure overload all upregulated pathways related to TGF-b signaling and mesenchymal gene expression, inflammation, vascular permeability, oxidative stress, collagen synthesis and cellular senescence, whereas exercise training attenuated most of the same pathways. We identified collagen chaperone Serpinh1 (also called as Hsp47) to be significantly increased by aging and obesity and repressed by exercise training. Mechanistic studies demonstrated that increased SERPINH1 in human ECs induced mesenchymal properties, while its silencing inhibited collagen deposition. Our data demonstrate that CVD risk factors significantly remodel the transcriptomic landscape of cardiac ECs inducing inflammatory, senescence and mesenchymal features. SERPINH1 was identified as a potential therapeutic target in ECs.

Data availability

All RNA sequencing data have been deposited in GEO under accession code GSE145263.

The following data sets were generated

Article and author information

Author details

  1. Karthik Amudhala Hemanthakumar

    Faculty of Medicine, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6151-1005
  2. Shentong Fang

    Faculty of Medicine, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3520-7007
  3. Andrey Anisimov

    Faculty of Medicine, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0259-1273
  4. Mikko I Mäyränpää

    Pathology, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Eero Mervaala

    Faculty of Medicine, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Riikka Kivelä

    Faculty of Medicine, University of Helsinki, Helsinki, Finland
    For correspondence
    riikka.kivela@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-8890

Funding

Jenny ja Antti Wihurin Rahasto

  • Karthik Amudhala Hemanthakumar
  • Riikka Kivelä

Academy of Finland (297245)

  • Riikka Kivelä

Sydäntutkimussäätiö

  • Karthik Amudhala Hemanthakumar
  • Riikka Kivelä

Sigrid Juséliuksen Säätiö

  • Riikka Kivelä

Suomen Kulttuurirahasto

  • Riikka Kivelä

Suomen Lääketieteen Säätiö

  • Mikko I Mäyränpää

Biomedicum Helsinki-säätiö

  • Karthik Amudhala Hemanthakumar

Aarne Koskelon Säätiö

  • Karthik Amudhala Hemanthakumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the committee appointed by the District of Southern Finland (permit number ESAVI/22658/2018). The study was performed in accordance with the recommendations of FELASA. All of the animals were handled according to approved institutional animal care and use committee of the University of Helsinki. All surgery was performed under anesthesia advised by the University's veterinarians, and every effort was made to minimize suffering.

Human subjects: Human heart samples were obtained from 4 organ donor hearts, which could not be used for transplantation e.g. due to size or tissue-type mismatch. The collection was approved by institutional ethics committee and The National Authority for Medicolegal Affairs.

Copyright

© 2021, Hemanthakumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,645
    views
  • 441
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthik Amudhala Hemanthakumar
  2. Shentong Fang
  3. Andrey Anisimov
  4. Mikko I Mäyränpää
  5. Eero Mervaala
  6. Riikka Kivelä
(2021)
Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells
eLife 10:e62678.
https://doi.org/10.7554/eLife.62678

Share this article

https://doi.org/10.7554/eLife.62678

Further reading

    1. Chromosomes and Gene Expression
    2. Cell Biology
    Edited by Matt Kaeberlien et al.
    Collection

    eLife is pleased to present a Special Issue to highlight recent advances in the mechanistic understanding of aging and interventions that extend longevity.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.