Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy

  1. Sobhika Agarwala
  2. Keun-Young Kim
  3. Sebastien Phan
  4. Saeyeon Ju
  5. Ye Eun Kong
  6. Guillaume A Castillon
  7. Eric A Bushong
  8. Mark H Ellisman  Is a corresponding author
  9. Owen J Tamplin  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. University of California, San Diego, United States
  3. University of Wisconsin-Madison, United States

Abstract

The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently-labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.

Data availability

SBEM datasets have been deposited in the National Center for Microscopy and Imaging Research (NCMIR) publicly accessible resource database Cell Image Library (CIL). There are six SBEM datasets (accession numbers: CIL:54845, CIL:54846, CIL:54847, CIL:54848, CIL:54849, CIL:54850) that are accessible as group with the following link: http://cellimagelibrary.org/groups/54850. CIL accession numbers are referenced in Table 1. Newly generated plasmids have been deposited in Addgene (#188944 and #188945).

The following data sets were generated

Article and author information

Author details

  1. Sobhika Agarwala

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  2. Keun-Young Kim

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Sebastien Phan

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Saeyeon Ju

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Ye Eun Kong

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Guillaume A Castillon

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Eric A Bushong

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6195-2433
  8. Mark H Ellisman

    Department of Neurosciences, University of California, San Diego, La Jolla, United States
    For correspondence
    mellisman@ucsd.edu
    Competing interests
    No competing interests declared.
  9. Owen J Tamplin

    Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    tamplin@wisc.edu
    Competing interests
    Owen J Tamplin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9146-4860

Funding

National Heart, Lung, and Blood Institute (R01HL142998)

  • Owen J Tamplin

National Institute of Diabetes and Digestive and Kidney Diseases (K01DK103908)

  • Owen J Tamplin

American Heart Association (19POST34380221)

  • Sobhika Agarwala

National Institute of Neurological Disorders and Stroke (1U24NS120055-01)

  • Mark H Ellisman

National Institute of General Medical Sciences (R24 GM137200)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with protocols approved by the Institutional Animal Care and Use Committees at the University of Illinois at Chicago (Protocol ACC 19-051) and the University of Wisconsin-Madison (Protocol M006348).

Copyright

© 2022, Agarwala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,738
    views
  • 738
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sobhika Agarwala
  2. Keun-Young Kim
  3. Sebastien Phan
  4. Saeyeon Ju
  5. Ye Eun Kong
  6. Guillaume A Castillon
  7. Eric A Bushong
  8. Mark H Ellisman
  9. Owen J Tamplin
(2022)
Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy
eLife 11:e64835.
https://doi.org/10.7554/eLife.64835

Share this article

https://doi.org/10.7554/eLife.64835

Further reading

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.