Intronic enhancer region governs transcript-specific Bdnf expression in rodent neurons
Abstract
Brain-derived neurotrophic factor (BDNF) controls the survival, growth, and function of neurons both during the development and in the adult nervous system. Bdnf is transcribed from several distinct promoters generating transcripts with alternative 5' exons. Bdnf transcripts initiated at the first cluster of exons have been associated with the regulation of body weight and various aspects of social behavior, but the mechanisms driving the expression of these transcripts have remained poorly understood. Here, we identify an evolutionarily conserved intronic enhancer region inside the Bdnf gene that regulates both basal and stimulus-dependent expression of the Bdnf transcripts starting from the first cluster of 5' exons in mouse and rat neurons. We further uncover a functional E-box element in the enhancer region, linking the expression of Bdnf and various pro-neural basic helix-loop-helix transcription factors. Collectively, our results shed new light on the cell-type- and stimulus-specific regulation of the important neurotrophic factor BDNF.
Data availability
Mass-spectrometry results of the in vitro DNA pulldown experiment are provided in Supplementary Table 3.
-
Widespread transcription at neuronal activity-regulated enhancersNCBI Gene Expression Omnibus, GSE21161.
-
Rapid and Pervasive Changes in Genome-Wide Enhancer Usage During Mammalian DevelopmentNCBI Gene Expression Omnibus, GSE52386.
-
Genome-wide identification and characterization of functional neuronal activity-dependent enhancersNCBI Gene Expression Omnibus, GSE60192.
-
NeuroD2 ChIP-SEQ from embryonic cortexNCBI Gene Expression Omnibus, GSE67539.
-
A protein interaction network of mental disorder factors in neural stem cellsNCBI Gene Expression Omnibus, GSE70872.
-
Genome-wide maps of EGR1 binding in mouse frontal cortexNCBI Gene Expression Omnibus, GSE67482.
Article and author information
Author details
Funding
Estonian Research Council (IUT19-18)
- Jürgen Tuvikene
- Eli-Eelika Esvald
- Annika Rähni
- Kaie Uustalu
- Annela Avarlaid
- Tõnis Timmusk
Estonian Research Council (PRG805)
- Jürgen Tuvikene
- Eli-Eelika Esvald
- Annela Avarlaid
- Tõnis Timmusk
Norwegian Financial Mechanism (EMP128)
- Jürgen Tuvikene
- Eli-Eelika Esvald
- Annika Rähni
- Kaie Uustalu
- Tõnis Timmusk
European Regional Development Fund (2014-2020.4.01.15-0012)
- Jürgen Tuvikene
- Eli-Eelika Esvald
- Annika Rähni
- Kaie Uustalu
- Annela Avarlaid
- Tõnis Timmusk
H2020-MSCA-RISE-2016 (EU734791)
- Jürgen Tuvikene
- Eli-Eelika Esvald
- Anna Zhuravskaya
- Annela Avarlaid
- Eugene V Makeyev
- Tõnis Timmusk
Biotechnology and Biological Sciences Research Council (BB/M001199/1)
- Anna Zhuravskaya
- Eugene V Makeyev
Biotechnology and Biological Sciences Research Council (BB/M007103/1)
- Anna Zhuravskaya
- Eugene V Makeyev
Biotechnology and Biological Sciences Research Council (BB/R001049/1)
- Anna Zhuravskaya
- Eugene V Makeyev
European Regional Development Fund (ASTRA 2014-2020.4.01.16-0032)
- Jürgen Tuvikene
- Eli-Eelika Esvald
- Annela Avarlaid
- Tõnis Timmusk
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Tuvikene et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,888
- views
-
- 390
- downloads
-
- 26
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.
-
- Chromosomes and Gene Expression
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.