Abstract

The clinical and largely unpredictable heterogeneity of phenotypes in patients with mitochondrial disorders demonstrates the ongoing challenges in the understanding of this semi-autonomous organelle in biology and disease. Previously, we used the gene-breaking transposon to create 1200 transgenic zebrafish strains tagging protein-coding genes (1), including the lrpprc locus. Here we present and characterize a new genetic revertible animal model that recapitulates components of Leigh Syndrome French Canadian Type (LSFC), a mitochondrial disorder that includes diagnostic liver dysfunction. LSFC is caused by allelic variations in the LRPPRC gene, involved in mitochondrial mRNA polyadenylation and translation. lrpprc zebrafish homozygous mutants displayed biochemical and mitochondrial phenotypes similar to clinical manifestations observed in patients, including dysfunction in lipid homeostasis. We were able to rescue these phenotypes in the disease model using a liver-specific genetic model therapy, functionally demonstrating a previously under-recognized critical role for the liver in the pathophysiology of this disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data is provided along with the manuscript. Raw sequencing data has been uploaded on NCBI SRA. ID: PRJNA683704

The following data sets were generated

Article and author information

Author details

  1. Ankit Sabharwal

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4355-0355
  2. Mark D Wishman

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Roberto Lopez Cervera

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. MaKayla R Serres

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer L Anderson

    Department of Embryology, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shannon R Holmberg

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bibekananda Kar

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anthony J Treichel

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4393-7034
  9. Noriko Ichino

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7009-8299
  10. Weibin Liu

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jingchun Yang

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yonghe Ding

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yun Deng

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jean M Lacey

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. William J Laxen

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Perry R Loken

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Devin Oglesbee

    Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Steven Arthur Farber

    Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8037-7312
  19. Karl J Clark

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9637-0967
  20. Xiaolei Xu

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4928-3422
  21. Stephen C Ekker

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    For correspondence
    ekker.stephen@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0726-4212

Funding

National Institutes of Health (GM63904)

  • Stephen C Ekker

National Institutes of Health (DA14546)

  • Stephen C Ekker

Marriott Foundation

  • Stephen C Ekker

Mayo Foundation for Medical Education and Research

  • Stephen C Ekker

National Institutes of Health (DK093399)

  • Steven Arthur Farber

Carnegie Institution for Science

  • Steven Arthur Farber

G. Harold and Leila Y. Mathers Charitable Foundation

  • Steven Arthur Farber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All adult zebrafish and embryos were maintained according to the guidelines established by Mayo Clinic Institutional Animal Care and Use Committee (IACUC number: A34513-13-R16).

Copyright

© 2022, Sabharwal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,276
    views
  • 195
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ankit Sabharwal
  2. Mark D Wishman
  3. Roberto Lopez Cervera
  4. MaKayla R Serres
  5. Jennifer L Anderson
  6. Shannon R Holmberg
  7. Bibekananda Kar
  8. Anthony J Treichel
  9. Noriko Ichino
  10. Weibin Liu
  11. Jingchun Yang
  12. Yonghe Ding
  13. Yun Deng
  14. Jean M Lacey
  15. William J Laxen
  16. Perry R Loken
  17. Devin Oglesbee
  18. Steven Arthur Farber
  19. Karl J Clark
  20. Xiaolei Xu
  21. Stephen C Ekker
(2022)
Genetic therapy in a mitochondrial disease model suggests a critical role for liver dysfunction in mortality
eLife 11:e65488.
https://doi.org/10.7554/eLife.65488

Share this article

https://doi.org/10.7554/eLife.65488

Further reading

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.