Morphological and genomic shifts in mole-rat 'queens' increase fecundity but reduce skeletal integrity

  1. Rachel A Johnston  Is a corresponding author
  2. Philippe Vullioud
  3. Jack Thorley
  4. Henry Kirveslahti
  5. Leyao Shen
  6. Sayan Mukherjee
  7. Courtney M Karner
  8. Tim Clutton-Brock
  9. Jenny Tung  Is a corresponding author
  1. Duke University, United States
  2. University of Cambridge, United Kingdom
  3. Duke University School of Medicine, United States
  4. University of Texas Southwestern Medical Center, United States

Abstract

In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also up-regulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.

Data availability

All RNA sequencing data generated during this study are available in the NCBI Gene Expression Omnibus (series accession GSE152659). ATAC-Seq data are available in the NCBI Sequence Read Archive (BioProject accession number PRJNA649596). μCT data from this study are available on MorphoSource (http://www.morphosource.org, project 1056). All code used for the study are available at https://github.com/rachelj98/MoleratBones.

The following data sets were generated

Article and author information

Author details

  1. Rachel A Johnston

    Department of Evolutionary Anthropology, Duke University, Durham, United States
    For correspondence
    racheljohnston7@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8965-1162
  2. Philippe Vullioud

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Jack Thorley

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Henry Kirveslahti

    Department of Statistical Science, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  5. Leyao Shen

    Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, United States
    Competing interests
    No competing interests declared.
  6. Sayan Mukherjee

    Department of Statistical Science; Department of Computer Science; Department of Mathematics; Department of Bioinformatics & Biostatistics, Duke University, Durham, United States
    Competing interests
    No competing interests declared.
  7. Courtney M Karner

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  8. Tim Clutton-Brock

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  9. Jenny Tung

    Evolutionary Anthropology, Biology, Duke University, Durham, NC, United States
    For correspondence
    jenny.tung@duke.edu
    Competing interests
    Jenny Tung, Jenny Tung is a Reviewing Editor at eLife..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0416-2958

Funding

European Research Council (294494)

  • Tim Clutton-Brock

National Institutes of Health (AR076325)

  • Courtney M Karner

National Institutes of Health (AR071967)

  • Courtney M Karner

European Research Council (742808)

  • Tim Clutton-Brock

Human Frontier Science Program (RGP0051-2017)

  • Sayan Mukherjee
  • Tim Clutton-Brock
  • Jenny Tung

National Science Foundation (IOS-7801004)

  • Jenny Tung

National Institutes of Health (F32HD095616)

  • Rachel A Johnston

Sloan Foundation Early Career Research Fellowship

  • Jenny Tung

Foerster-Bernstein Postdoctoral Fellowship

  • Rachel A Johnston

Natural Environment Research Council (Doctoral Training Program Grant)

  • Jack Thorley

North Carolina Biotechnology Center (2016-IDG-1013)

  • Jenny Tung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were deeply anesthetized with isoflurane and sacrificed with decapitation following USGS National Wildlife Health Center guidelines and under approval from the Animal Ethics Committee of the University of Pretoria (Permit #EC081-17).

Copyright

© 2021, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,762
    views
  • 190
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel A Johnston
  2. Philippe Vullioud
  3. Jack Thorley
  4. Henry Kirveslahti
  5. Leyao Shen
  6. Sayan Mukherjee
  7. Courtney M Karner
  8. Tim Clutton-Brock
  9. Jenny Tung
(2021)
Morphological and genomic shifts in mole-rat 'queens' increase fecundity but reduce skeletal integrity
eLife 10:e65760.
https://doi.org/10.7554/eLife.65760

Share this article

https://doi.org/10.7554/eLife.65760

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.