Chromatin topology defines estradiol-primed progesterone receptor and PAX2 binding in endometrial cancer cells

  1. Alejandro La Greca
  2. Nicolás Bellora
  3. François Le Dily
  4. Rodrigo Jara
  5. Ana Silvina Nacht
  6. Javier Quilez Oliete
  7. José Luis Villanueva
  8. Enrique Vidal
  9. Gabriela Merino
  10. Cristóbal Fresno
  11. Inti Tarifa Reischle
  12. Griselda Vallejo
  13. Guillermo Pablo Vicent
  14. Elmer Fernández
  15. Miguel Beato
  16. Patricia Saragüeta  Is a corresponding author
  1. Biology and Experimental Medicine Institute, Argentina
  2. Institute of Nuclear Technologies for Health, Argentina
  3. Centre for Genomic Regulation, Spain
  4. Córdoba University, Argentina

Abstract

Estrogen (E2) and Progesterone (Pg), via their specific receptors (ERalpha and PR), are major determinants in the development and progression of endometrial carcinomas, However, their precise mechanism of action and the role of other transcription factors involved are not entirely clear. Using Ishikawa endometrial cancer cells, we report that E2 treatment exposes a set of progestin-dependent PR binding sites which include both E2 and progestin target genes. ChIP-seq results from hormone-treated cells revealed a non-random distribution of PAX2 binding in the vicinity of these estrogen-promoted PR sites. Altered expression of hormone regulated genes in PAX2 knockdown cells suggests a role for PAX2 in fine-tuning ERalpha and PR interplay in transcriptional regulation. Analysis of long-range interactions by Hi-C coupled with ATAC-seq data showed that these regions, that we call 'progestin control regions' (PgCRs), exhibited an open chromatin state even before hormone exposure and were non-randomly associated with regulated genes. Nearly 20% of genes potentially influenced by PgCRs were found to be altered during progression of endometrial cancer. Our findings suggest that endometrial response to progestins in differentiated endometrial tumor cells results in part from binding of PR together with PAX2 to accessible chromatin regions. What maintains these regions open remains to be studied.

Data availability

All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene Expression Omnibus under accession number GSE139398 (reviewer access: ergbqgaebbmjrmt).Source data file has been provided for Figure 6.T47D ChIPseq data is available under GEO accession number GSE41466 (Ballare et al, 2013) and Hi-C data in GEO accession GSE53463 (Le-Dily et al, 2014). RNAseq datasets from proliferative (GSM3890623, GSM3890624, GSM3890625 and GSM3890626) and mid-secretory (GSM3890627, GSM3890628, GSM3890629, GSM3890630 and GSM3890631) human endometrium were obtained from GEO accession GSE132711 (SuperSeries GSE132713) (Chi et al, 2020). ChIPseq coverage data of proliferative and secretory normal endometrium were downloaded from GEO accession GSE132712 (SuperSeries GSE132713) (Chi et al, 2020). Human endometrial cancer RNAseq samples (n=575) were downloaded from The Cancer Genome Atlas (TCGA), project TCGA-UCEC. Additional normal and endometrial cancer samples (n=109) were accessed through CPTAC program in the National Cancer Institute using cptac platform installed with python (Dou et al, 2020).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alejandro La Greca

    Biology and Experimental Medicine Institute, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0309-7683
  2. Nicolás Bellora

    National Scientific and Technical Research Council (CONICET), Institute of Nuclear Technologies for Health, Bariloche, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6637-3465
  3. François Le Dily

    Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Rodrigo Jara

    Biology and Experimental Medicine Institute, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  5. Ana Silvina Nacht

    Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Javier Quilez Oliete

    Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. José Luis Villanueva

    Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Enrique Vidal

    Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Gabriela Merino

    Bioscience Data Mining Group, Córdoba University, Córdoba, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  10. Cristóbal Fresno

    Bioscience Data Mining Group, Córdoba University, Córdoba, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  11. Inti Tarifa Reischle

    Biology and Experimental Medicine Institute, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  12. Griselda Vallejo

    Biology and Experimental Medicine Institute, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  13. Guillermo Pablo Vicent

    Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  14. Elmer Fernández

    Bioscience Data Mining Group, Córdoba University, Córdoba, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  15. Miguel Beato

    Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  16. Patricia Saragüeta

    Biology and Experimental Medicine Institute, Buenos Aires, Argentina
    For correspondence
    patriciasaragueta2@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8222-9690

Funding

Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2015-682)

  • Patricia Saragüeta

Fondo para la Investigación Científica y Tecnológica (PICT 2015-3426)

  • Patricia Saragüeta

H2020 European Research Council (FP7/2007-2013 grant agreement 609989)

  • Miguel Beato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, La Greca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,839
    views
  • 283
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro La Greca
  2. Nicolás Bellora
  3. François Le Dily
  4. Rodrigo Jara
  5. Ana Silvina Nacht
  6. Javier Quilez Oliete
  7. José Luis Villanueva
  8. Enrique Vidal
  9. Gabriela Merino
  10. Cristóbal Fresno
  11. Inti Tarifa Reischle
  12. Griselda Vallejo
  13. Guillermo Pablo Vicent
  14. Elmer Fernández
  15. Miguel Beato
  16. Patricia Saragüeta
(2022)
Chromatin topology defines estradiol-primed progesterone receptor and PAX2 binding in endometrial cancer cells
eLife 11:e66034.
https://doi.org/10.7554/eLife.66034

Share this article

https://doi.org/10.7554/eLife.66034

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.