A δ-cell subpopulation with pro-β cell identity contributes to efficient age-independent recovery in a zebrafish diabetes model

Abstract

Restoring damaged b-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study b-cells arising following destruction. We show that most new insulin cells differ from the original b-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to b-cell destruction is fast, efficient and age-independent. Bihormonal cells are transcriptionally close to a subset of d-cells that we identified in control islets and which are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins+ bihormonal cells following b-cell destruction. Our findings support the conclusion that sst1.1 d-cells possess a pro-b identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.

Data availability

RNA sequencing data have been deposited at NCBI GEO

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Claudio Andrés Carril Pardo

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  2. Laura Massoz

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  3. Marie A Dupont

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  4. David Bergemann

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  5. Jordane Bourdouxhe

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  6. Arnaud Lavergne

    GIGA-Genomics core facility, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  7. Estefania Tarifeño-Saldivia

    Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
    Competing interests
    No competing interests declared.
  8. Christian SM Helker

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  9. Didier YR Stainier true

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026
  10. Bernard Peers

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  11. Marianne M Voz

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cellslls, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  12. Isabelle Manfroid

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    For correspondence
    Isabelle.Manfroid@uliege.be
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3445-3764

Funding

Chilean National Agency for Research and Development , Becas Chile (Scholarship,72170660)

  • Claudio Andrés Carril Pardo

National Belgian Funds for Scientific Research (FRIA PhD fellowship)

  • Arnaud Lavergne

National Belgian Funds for Scientific Research (FRIA PhD fellowship)

  • Laura Massoz

National Belgian Funds for Scientific Research (EoS Program,30826052)

  • Marie A Dupont

National Belgian Funds for Scientific Research (FRIA PhD fellowship)

  • David Bergemann

National Belgian Funds for Scientific Research (EoS Program,30826052)

  • Jordane Bourdouxhe

European Regional Development Fund (Biomed Hub Technology Support,2.2.1/996)

  • Arnaud Lavergne

National Belgian Funds for Scientific Research

  • Bernard Peers

National Belgian Funds for Scientific Research

  • Isabelle Manfroid

National Belgian Funds for Scientific Research

  • Marianne M Voz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in compliance with the European Union and Belgian law and with the approval of the ULiège Ethical Committee for experiments with laboratory animals (approval numbers 14-1662, 16-1872, 19-2083, 21-2353).

Copyright

© 2022, Carril Pardo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,869
    views
  • 330
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudio Andrés Carril Pardo
  2. Laura Massoz
  3. Marie A Dupont
  4. David Bergemann
  5. Jordane Bourdouxhe
  6. Arnaud Lavergne
  7. Estefania Tarifeño-Saldivia
  8. Christian SM Helker
  9. Didier YR Stainier true
  10. Bernard Peers
  11. Marianne M Voz
  12. Isabelle Manfroid
(2022)
A δ-cell subpopulation with pro-β cell identity contributes to efficient age-independent recovery in a zebrafish diabetes model
eLife 11:e67576.
https://doi.org/10.7554/eLife.67576

Share this article

https://doi.org/10.7554/eLife.67576

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.