Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life

Abstract

Bacterial members of the infant gut microbiota and bacterial-derived short-chain fatty acids (SCFAs) have been shown to be protective against childhood asthma, but a role for the fungal microbiota in asthma etiology remains poorly defined. We recently reported an association between overgrowth of the yeast Pichia kudriavzevii in the gut microbiota of Ecuadorian infants and increased asthma risk. In the present study, we replicated these findings in Canadian infants and investigated a causal association between early life gut fungal dysbiosis and later allergic airway disease (AAD). In a mouse model, we demonstrate that overgrowth of P. kudriavzevii within the neonatal gut exacerbates features of type-2 and -17 inflammation during AAD later in life. We further show that P. kudriavzevii growth and adherence to gut epithelial cells are altered by SCFAs. Collectively, our results underscore the potential for leveraging inter-kingdom interactions when designing putative microbiota-based asthma therapeutics.

Data availability

Data Availability: All data generated or analyzed during this study are included in the manuscript and supporting files. Sequencing data have been deposited in the NCBI SRA under accession code SUB7276684 (https://www.ncbi.nlm.nih.gov/sra/PRJNA624902).

The following data sets were generated

Article and author information

Author details

  1. Rozlyn CT Boutin

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    For correspondence
    rozlyn.boutin@msl.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1598-0104
  2. Charisse Petersen

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah E Woodward

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6688-0595
  4. Antonio Serapio-Palacios

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Tahereh Bozorgmehr

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachelle Loo

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Alina Chalanuchpong

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Mihai Cirstea

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4900-6385
  9. Bernard Lo

    The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Kelsey E Huus

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Weronika Barcik

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Meghan B Azad

    Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Allan B Becker

    Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Piush J Mandhane

    Department of Pediatrics, School of Public Health, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Theo J Moraes

    The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Malcolm R Sears

    Department of Medicine, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  17. Padmaja Subbarao

    The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  18. Kelly M McNagny

    Department of Biomedical Engineering, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4737-3499
  19. Stuart E Turvey

    Department of Pediatrics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  20. Brett Finlay

    Michael Smith Laboratories, Microbiology & Immunology, University of British Columbia, Vancouver, Canada
    For correspondence
    bfinlay@msl.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5303-6128

Funding

Canadian Institutes of Health Research (Project Grant PJT-148484)

  • Brett Finlay

Canadian Institutes of Health Research (Foundation Grant FDN-159935)

  • Brett Finlay

AllerGen (12CHILD)

  • Meghan B Azad
  • Allan B Becker
  • Piush J Mandhane
  • Theo J Moraes
  • Malcolm R Sears
  • Padmaja Subbarao
  • Stuart E Turvey
  • Brett Finlay

Canadian Institutes of Health Research (Doctoral: Vanier Canada Graduate Scholarships)

  • Rozlyn CT Boutin

Vancouver Coastal Health-Canadian Institutes of Health Research (UBC MD/PhD Studentship Award)

  • Rozlyn CT Boutin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were in accordance with the University of British Columbia Animal Care Committee guidelines and approved by the UBC Animal Care Committee (protocols A17-0322 and A13-0344).

Human subjects: The CHILD Cohort Study protocols were approved by the human clinical research ethics boards at all universities and institutions directly involved with the CHILD cohort (McMaster University, University of British Columbia, the Hospital for Sick Children, University of Manitoba, and University of Alberta). Work in the Finlay/Turvey labs is conducted under the ethics certificate number H07-03120.

Copyright

© 2021, Boutin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,051
    views
  • 435
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rozlyn CT Boutin
  2. Charisse Petersen
  3. Sarah E Woodward
  4. Antonio Serapio-Palacios
  5. Tahereh Bozorgmehr
  6. Rachelle Loo
  7. Alina Chalanuchpong
  8. Mihai Cirstea
  9. Bernard Lo
  10. Kelsey E Huus
  11. Weronika Barcik
  12. Meghan B Azad
  13. Allan B Becker
  14. Piush J Mandhane
  15. Theo J Moraes
  16. Malcolm R Sears
  17. Padmaja Subbarao
  18. Kelly M McNagny
  19. Stuart E Turvey
  20. Brett Finlay
(2021)
Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life
eLife 10:e67740.
https://doi.org/10.7554/eLife.67740

Share this article

https://doi.org/10.7554/eLife.67740

Further reading

    1. Immunology and Inflammation
    Weigao Zhang, Hu Liu ... Dan Weng
    Research Article

    As a central hub for metabolism, the liver exhibits strong adaptability to maintain homeostasis in response to food fluctuations throughout evolution. However, the mechanisms governing this resilience remain incompletely understood. In this study, we identified Receptor interacting protein kinase 1 (RIPK1) in hepatocytes as a critical regulator in preserving hepatic homeostasis during metabolic challenges, such as short-term fasting or high-fat dieting. Our results demonstrated that hepatocyte-specific deficiency of RIPK1 sensitized the liver to short-term fasting-induced liver injury and hepatocyte apoptosis in both male and female mice. Despite being a common physiological stressor that typically does not induce liver inflammation, short-term fasting triggered hepatic inflammation and compensatory proliferation in hepatocyte-specific RIPK1-deficient (Ripk1-hepKO) mice. Transcriptomic analysis revealed that short-term fasting oriented the hepatic microenvironment into an inflammatory state in Ripk1-hepKO mice, with up-regulated expression of inflammation and immune cell recruitment-associated genes. Single-cell RNA sequencing further confirmed the altered cellular composition in the liver of Ripk1-hepKO mice during fasting, highlighting the increased recruitment of macrophages to the liver. Mechanically, our results indicated that ER stress was involved in fasting-induced liver injury in Ripk1-hepKO mice. Overall, our findings revealed the role of RIPK1 in maintaining liver homeostasis during metabolic fluctuations and shed light on the intricate interplay between cell death, inflammation, and metabolism.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.